Abstract:
A method of preparing semiconductor dies from a semiconductor wafer having a plurality of fabrication regions separated by dicing lines on the top side of the wafer, and an adhesive coating on the back side of the wafer, comprises applying a repellent material to the fabrication regions and dicing lines where the adhesive coating is not intended to be printed; applying the adhesive coating to the back side of the wafer; removing the repellent material; and separating the wafer along the dicing lines into individual dies.
Abstract:
A method for preparing a semiconductor wafer into individual semiconductor dies using both a dicing before grinding operation and a wafer back side adhesive coating includes the step of applying a water or organic solvent soluble material into the partially cut/etched dicing lines and over the top surface of the circuits to prevent the ingress of wafer back side coating into the dicing streets and interference during singulation.
Abstract:
A method for preparing a semiconductor wafer into individual semiconductor dies using both a dicing before grinding operation and a wafer back side adhesive coating includes the step of applying a water or organic solvent soluble material into the partially cut/etched dicing lines and over the top surface of the circuits to prevent the ingress of wafer back side coating into the dicing streets and interference during singulation.
Abstract:
The invention provides methods for depositing a coating onto the entire backside of a semiconductor wafer. The methods of the invention address the deficiencies typically associated with deposition of coatings onto the backside of semiconductor wafers. Since the methods of the invention result in wafers wherein a coating has been dispensed all the way to the edge of the wafer, there is minimal chip flying during dicing, and minimal wafer breakage and chip breakage. In addition, the methods of the invention result in a marked decrease in waste when compared to traditional spin coating methods.
Abstract:
A method of preparing semiconductor dies from a semiconductor wafer having a plurality of fabrication regions separated by dicing lines on the top side of the wafer, and an adhesive coating on the back side of the wafer, comprises applying a repellent material to the fabrication regions and dicing lines where the adhesive coating is not intended to be printed; applying the adhesive coating to the back side of the wafer; removing the repellent material; and separating the wafer along the dicing lines into individual dies.