Abstract:
A powder-rubbing apparatus comprises: a rotatable rubbing roll having a rotational axis; a substrate path; an oscillating mechanism for oscillating the rotatable rubbing roll along the rotational axis; and a powder coating die comprising an inlet port in fluid communication with an outlet port disposed adjacent to the substrate path. The substrate frictionally contacts the rotatable rubbing roll within a rubbing zone. A dispenser for dispensing gas-borne powder is in fluid communication with the inlet port of the powder coating die. The dispenser is aligned such that at least a portion of a gas-borne powder dispensed from the powder coating die is deposited directly onto at least one of the rotatable rubbing roll or the substrate and conveyed into the rubbing zone. A method of using the powder-rubbing apparatus and a powder-rubbed web preparable thereby are also disclosed.
Abstract:
A powder-rubbing apparatus comprises: a rotatable rubbing roll having a rotational axis; a substrate path; an oscillating mechanism for oscillating the rotatable rubbing roll along the rotational axis; and a powder coating die comprising an inlet port in fluid communication with an outlet port disposed adjacent to the substrate path. The substrate frictionally contacts the rotatable rubbing roll within a rubbing zone. A dispenser for dispensing gas-borne powder is in fluid communication with the inlet port of the powder coating die. The dispenser is aligned such that at least a portion of a gas-borne powder dispensed from the powder coating die is deposited directly onto at least one of the rotatable rubbing roll or the substrate and conveyed into the rubbing zone. A method of using the powder-rubbing apparatus and a powder-rubbed web preparable thereby are also disclosed.
Abstract:
The invention is an apparatus for dispensing particles onto a surface (12). The apparatus includes a hopper (50) for receiving particles. The hopper includes a hopper opening (55). The screen (56) is disposed over the hopper opening (55) so as to cover the opening. A brush (58) is disposed approximate to the screen (56) such that bristles on the brush contact the screen.
Abstract:
Multi-layer cover tape constructions include a polymeric substrate with a low adhesion backsize coating layer on one surface and an adhesive layer on the other surface, with a conductive film construction adhered to a portion of the adhesive layer such that portions of the adhesive remain exposed. The conductive film construction includes a polymeric substrate with an exposed layer of abrasion-resistant, electrically conductive nano-scale graphite coated by buff coating. Other multi-layer cover tape constructions include a polymeric substrate with a low adhesion backsize coating layer on one surface, and an exposed layer of abrasion-resistant, electrically conductive nano-scale graphite particles coated on the other surface. Stripes of adhesive are present on a portion of the electrically conductive coating such that portions of the electrically conductive coating remain exposed between the adhesive stripes. Carrier tapes include a plurality of indented segments for accommodating electronic components and are releasably sealed by a cover tape.
Abstract:
A method of forming an article is provided. The method can include providing a substrate comprising a surface. The method can further include forming a solvent soluble layer on or over the surface of the substrate in a pattern, the pattern defining one or more first portions of the surface that are overlaid by the solvent soluble layer, and one or more second portions of the surface that are free of the solvent soluble layer. The method can further include forming a second layer on or over at least one of the first portions and at least one of the second portions, wherein the step of forming the second layer includes buffing an exfoliatable material on or over at least one of the first portions and at least one of the second portions. The method can further include removing the solvent soluble layer by applying a solvent to the substrate.
Abstract:
Electrically-conductive articles are provided that include a current collector (102) having a conductive coating (104a, 104b). The current collector (102) has nanoporous structure, such as that from etched metal, and a carbon coating (104a, 104b) in contact with the current collector (102). The carbon coating (104a, 104b) is free of binder. In some embodiments, the current collector (102) includes etched aluminum. The provided electrically-conductive articles can be electrochemical capacitors or lithium- ion electrochemical cells.
Abstract:
An electronic assembly comprising a first electronic element, a second electronic element, and a durably flexible bond therebetween. The bond comprises an anisotropic conductive adhesive that includes elongated electrically conductive particles. The bond provides at least one electrical pathway between the first electronic element and the second electronic element through an elongated contact region. This bond is functionally maintained for at least about 200 flexes.
Abstract:
A method of coating a substrate with a particulate coating composition is disclosed that creates a coated substrate having a controlled, nonuniform surface property profile that varies along at least one primary dimension. The substrate is positioned on a textured template. An effective amount of the particulate coating composition is buffed onto a surface of the substrate with the at least one orbital applicator moving in a plane parallel to surface in a plurality of directions relative to a point on the surface in an orbital manner while at least one process variable is changed during the coating of the substrate. Process variable that can be varied during coating include application time, application pressure, coating temperature, the contour of the textured template, orbital speed, web speed, and the particulate coating composition.
Abstract:
An electrical film heater having a variable thermal output is described herein. The electrothermal film heater comprises a substrate having first and second major surfaces that is characterized by a length and a width. A nonuniform graphite coating layer is disposed on at least one major surface of the substrate creating a variable electrical resistance coating on the substrate along at least one of the length and/or the width of the substrate, and a pair of spaced apart bus bars disposed on top of the graphite coating layer.
Abstract:
An article includes a substrate having a first major surface and optionally a second major surface. A layering arrangement is disposed on either or both of the first major surface and the second major surface. The layering arrangement includes a carbon layer and a conducting polymer layer.