Abstract:
A system for reducing the cost and increasing the rate and reliability of data transmission from space to ground includes a network of relay satellites in low Earth orbit (LEO). Each relay satellite is configured to receive data from one or more client satellites, and configured to transmit data from LEO to ground using optical communications. The system may also include multiple optical ground stations configured to receive the data and transmit the received data using terrestrial networks to client locations. The network may provide an alternative to downlinking large amounts of data for new satellite operators without an existing ground network and for established satellite operators seeking higher data rates, lower latency, or reduced ground system operating costs.
Abstract:
A relay satellite node is provided. The relay satellite node may enable separate pointing of a receive portion and transmit portion of the node, enabling continuous communication through the node. The node may include two separate satellites flying in close proximity to one another. One of the satellites may use its attitude-control system to enable high-gain communications from a distant source, and the other satellite may use its attitude-control system to enable high-gain communication to a distant receiver. The two satellites may communicate with one another over a high-rate, short-range, omnidirectional communication system. A LEO network of these nodes, in combination with dedicated client-specific relay satellites may provide high-rate communication between any space asset and a ground network with latency limited only by the speed of light.
Abstract:
A microfluidic device includes a substrate including multiple electro-hydraulic valves and/or electro-hydraulic pumps that each include a flow channel and one or more hydraulic control channels, actuators for controlling the electro-hydraulic valves and/or electro-hydraulic pumps, and a hydraulic pressure source operatively connected to the hydraulic control channels.
Abstract:
A fluid transport/containment apparatus includes a fluid-bearing module and an actuation module. The fluid-bearing module includes a substrate and fluid transport/containment elements distributed therein, with one or more of the fluid transport/containment elements having microfluidic dimensions. The actuation module is detachably secured to the fluid-bearing module such that the actuation elements are operatively interfaced with the fluid transport/containment elements.
Abstract:
An electro-hydraulic valve apparatus includes a flow channel, a hydraulic control channel defining an electro-hydraulic valve junction where the hydraulic control channel is adjacent to the flow channel, a flexible wall between the flow channel and the hydraulic control channel at the electro-hydraulic valve junction, and Peltier devices adjacent to the hydraulic control channel on opposite sides of the electro-hydraulic valve junction for controllably applying a hydraulic force against the flexible wall repositioning the flexible wall in relation to the flow channel to selectively close or open the electro-hydraulic valve apparatus.
Abstract:
A valve apparatus includes a fluid-bearing module and an actuation module. The fluid-bearing module includes a substrate and a channel formed in the substrate, the channel having microfluidic dimensions. The actuation module is detachably secured to the fluid-bearing module and includes a heating/cooling element adjacent to the channel. The heating/cooling element is controllable to generate or absorb sufficient energy to cause the a material in the valve apparatus to transition from a solid phase to a liquid phase, or from a solid phase to a liquid phase, or to expand or contract, thereby providing a phase-change valve.
Abstract:
A valve apparatus includes a substrate, a main flow channel formed in the substrate, a control channel formed in the substrate such that the main flow channel and the control channel meet at a junction, a bi-phase material within the control channel, a heating element adjacent the control channel and the junction, the heating element being controllable to generate sufficient energy to cause the bi-phase material to transition from a solid phase to a liquid phase, and a pumping mechanism for forcing the bi-phase material either into or out of the junction when the bi-phase material is in the liquid phase.