Abstract:
An image-guided lumbar puncture aspiration and injector system. The system includes an auto-injection device having a housing, at least one syringe having a fluid, a controller, a processor, a memory, and a display. An imaging device is communicatively coupled to the auto-injection device and captures images of a lumbar puncture area of a patient to be displayed on the display of the auto-injection device, helping identify a location for a lumbar puncture procedure. A needle assembly is coupled to the at least one syringe of the auto¬ injection device. An outer needle is adapted to be inserted into a location of the lumbar puncture area identified by the imaging device, and an inner needle is adapted to be inserted into the dura of the patient. The outer sheath needle protects the inner needle from contaminants. The controller operates the auto- injection device based on a programmed infusion and aspiration profile.
Abstract:
Catheters, catheter ports, connectors, and related methods are disclosed herein, e.g., for drug delivery to a subject. The catheters and catheter ports can include various features to facilitate dosing protocols that require multiple injections, and/or for reducing or eliminating damage that may occur to the catheter, port, or patient tissue as a result of multiple injections.
Abstract:
The methods, systems, and devices disclosed herein generally involve convection-enhanced delivery of drugs to a target region within a patient. Microfluidic catheter devices are disclosed that are particularly suitable for targeted delivery of drugs via convection, including devices capable of multi-directional drug delivery, devices that control fluid pressure and velocity using the venturi effect, and devices that include conformable balloons. Methods of treating various diseases using such devices are also disclosed, including methods of treating cerebral and spinal cavernous malformations, cavernomas, and hemangiomas, methods of treating neurological diseases, methods of treatment using multiple microfluidic delivery devices, methods of treating hearing disorders, methods of spinal drug delivery using microfluidic devices, and methods of delivering stem cells and therapeutics during fetal surgery. Methods of manufacturing such devices are also disclosed.
Abstract:
Drug delivery systems and methods are disclosed herein. In some embodiments, a drug delivery system can be configured to deliver a drug to a patient in coordination with a physiological parameter of the patient (e.g., the patient's natural cerebrospinal fluid (CSF) pulsation or the patient's heart or respiration rate). In some embodiments, a drug delivery system can be configured to use a combination of infusion and aspiration to control delivery of a drug to a patient. Catheters, controllers, and other components for use in the above systems are also disclosed, as are various methods of using such systems.
Abstract:
A therapy specific, pre-programmed, hand-held auto-injection device for delivering a drug to a patient and a method of using the hand-held auto-injection device. The auto-injection device includes a housing, a plurality of syringes carried by the housing, at least one actuator disposed within the housing, and a controller disposed within the housing and communicatively coupled to the at least one actuator. The controller is configured to receive an infusion and aspiration profile, which includes an infusion and aspiration protocol for controlling at least one of the plurality of syringes. The controller is also configured to operate the at least one actuator based on the infusion and aspiration protocol to expel a fluid from a respective barrel of the plurality of syringes into the infusion and aspiration location and/or draw a fluid from the infusion and aspiration location into a respective barrel of the plurality of syringes.
Abstract:
Drug delivery systems and methods are disclosed herein. In some embodiments, a drug delivery system can be configured to deliver a drug to a patient in coordination with a physiological parameter of the patient (e.g., the patient's natural cerebrospinal fluid (CSF) pulsation or the patient's heart or respiration rate). In some embodiments, a drug delivery system can be configured to use a combination of infusion and aspiration to control delivery of a drug to a patient. Catheters, controllers, and other components for use in the above systems are also disclosed, as are various methods of using such systems.
Abstract:
Systems and methods for delivering a drug or other therapy over an extended period of time (e.g., several hours, days, weeks, months, years, and so forth) are disclosed herein, as are systems and methods for monitoring various parameters associated with the treatment of a patient. Systems and methods are also disclosed herein that generally involve CED devices with various features for reducing or preventing backflow.
Abstract:
Systems and methods are provided herein that generally involve shunting fluid, e.g., shunting cerebrospinal fluid in the treatment of hydrocephalus. Self-cleaning catheters are provided which include split tips configured such that pulsatile flow of fluid in a cavity in which the catheter is inserted can cause the tips to strike one another and thereby clear obstructions. Catheters with built-in flow indicators are also provided. Exemplary flow indicators include projections that extend radially inward from the interior surface of the catheter and which include imageable portions (e.g., portions which are visible under magnetic resonance imaging (MRl)). Movement of the flow indicators caused by fluid flowing through the catheter can be detected using MRl, thereby providing a reliable indication as to whether the catheter is partially or completely blocked. Systems and methods for flushing a shunt system and for opening auxiliary fluid pathways through a shunt system are also disclosed herein.
Abstract:
Fixation devices are disclosed herein that can be used to secure to a catheter. The fixation devices include a body having a central bore extending therethrough to receive a catheter and at least one end having a tapered profile tapering inwardly a distal edge thereof. The body can include an expanded intermediate portion, such as one or more bulbous portions. The fixation devices can also include suture openings or grooves to secure the devices to tissue.
Abstract:
Percutaneous therapy or drug delivery devices are described herein. The device can include one or multiple lumens inside a cannula or catheter body. The device can include features for reducing or preventing backflow or reflux of infusate along the device insertion track, such as one or more bullet noses, over tubes, and/or micro-tips. The device can be used in any of a variety of treatment methods, including to inject cancer therapy medicinal products directly into pulmonary tumors or tumors located in other regions of the body. The device can include features to keep the distal tip secure during patient respiration or during other patient movement, and can reduce the incidence of reflux during therapy delivery.