Abstract:
An adhesive stack comprises a shear layer positioned between two adhesive layers. The shear layer, comprised of a weak adhesive sub-layer positioned between substrate sublayers, is designed to fail upon application of a deliberate and appropriate shear force and before the failure of the adhesive layers. The adhesive sub-layer defines a width and/or length less than a width and/or length of another layer or sub-layer of the adhesive stack. The adhesive stack aids in securing components within an electronic device to prevent movement of the component when the device is dropped, hit, or bumped. The adhesive stack may occupy minimal space within the device, and reduce the cost of securing the component within the device's interior. The adhesive stack may allow for replacement of the component by an authorized person applying an appropriate and deliberate force. The adhesive stack may aid in identifying components replaced by an unauthorized person.
Abstract:
The present application describes various embodiments of systems and methods for providing internal components for portable computing devices having a thin profile. More particularly, the present application describes internal components configured to fit within a relatively thin outer enclosure.
Abstract:
A multipart computer housing is described. The multipart computer housing includes at least a structural support layer and a body. The body includes at least an outer layer formed of lightweight flexible material and an inner layer attached to the outer layer. The inner layer is connected to the support layer forming a load path between the inner layer and the structural support layer. A load applied to the multipart computer housing is transferred by way of the load path to the support layer without substantially affecting the outer layer.
Abstract:
The present application describes various embodiments regarding systems and methods for providing a lightweight and durable portable computing device having a thin profile. The portable computing device can take the form of a laptop computer. The laptop computer can include a uni-body top case having an integrated support system formed therein, the integrated support system providing structural support that distributes applied loads through the top case preventing warping and bowing.
Abstract:
An input mechanism is disclosed. The input mechanism includes a dome support structure (314) defining an opening (404) that extends through the dome support structure to face a case (303), a collapsible dome (402) positioned in the opening and engaged with the dome support structure, and a cover member (316) coupled to the dome support structure and covering the collapsible dome, thereby retaining the collapsible dome within the opening of the dome support structure. The dome support structure may also be a frame comprising retention channels (412) which capture a pivot pin (414) of a butterfly hinge (304). The collapsible dome (402) includes a protruding member such as an actuation arm (423) that extends into an interior volume of the dome and an array of suspension arms (904). The butterfly hinge (1300) may include wings (1302, 1304) and a living hinge (1306). A method of assembling a keyboard comprising a collapsible dome is also disclosed.
Abstract:
An internal component and external interface arrangement for a cylindrical compact computing system is described that includes at least a structural heat sink having triangular shape disposed within a cylindrical volume defined by a cylindrical housing. A computing engine having a generally triangular shape is described having internal components that include a graphics processing unit (GPU) board, a central processing unit (CPU) board, an input/output (I/O) interface board, an interconnect board, and a power supply unit (PSU).
Abstract:
This application relates to methods and apparatus for pneumatically separating adhesively joined components. A pneumatic release mechanism can be positioned between the adhesively joined components. The pneumatic release mechanism can be positioned adjacent to or within an adhesive joint so that when it is filled with air the pneumatic release mechanism can exert a force on the joined components sufficient to sever the adhesive bond. In some embodiments, the joined components can be housing components. In other embodiments, the joined components can be a battery cell and a housing component.
Abstract:
A desktop computing system having at least a central core surrounded by housing having a shape that defines a volume in which the central core resides is described. The housing includes a first opening and a second opening axially displaced from the first opening. The first opening having a size and shape in accordance with an amount of airflow used as a heat transfer medium for cooling internal components, the second opening defined by a lip that engages a portion of the airflow in such a way that at least some of the heat transferred to the air flow from the internal components is passed to the housing.
Abstract:
The present application describes various embodiments regarding systems and methods for providing efficient heat rejection for a lightweight and durable compact computing system having a small form factor. The compact computing system can take the form of a desktop computer. The desktop computer can include a monolithic top case having an integrated support system formed therein, the integrated support system providing structural support that distributes applied loads through the top case preventing warping and bowing. A mixed flow fan is utilized to efficiently pull cooling air through the compact computing system.