Abstract:
A method and apparatus for electrochemically processing metal and barrier materials is provided. In one embodiment, a method for electrochemically processing a substrate includes the steps of establishing an electrically-conductive path through an electrolyte between an exposed layer of barrier material on the substrate and an electrode, pressing the substrate against a processing pad assembly with a force less than about 2 psi, providing motion between the substrate and pad assembly in contact therewith and electrochemically removing a portion of the exposed layer during a first electrochemical processing step in a barrier processing station.
Abstract:
Embodiments of a processing pad assembly for processing a substrate are provided. The processing pad assembly includes an upper layer having a processing surface and an electrode having a top side coupled to the upper layer and a bottom side opposite the top side. A first set of holes is formed through the upper layer for exposing the electrode to the processing surface. At least one aperture is formed through the upper layer and the electrode.
Abstract:
Embodiments of the invention generally provide a method and apparatus for processing a substrate in an electrochemical mechanical polishing system. In one embodiment, a cell for polishing a substrate includes a polishing pad disposed on a top surface of a platen assembly. A plurality of conductive elements are arranged in a spaced-apart relation across the upper polishing surface and adapted to bias the substrate relative to an electrode disposed between the pad and the platen assembly. A plurality of passages are formed through the platen assembly between the top surface and a plenum defined within the platen assembly. In another embodiment, a system is provided having a bulk polishing cell and a residual polishing cell. The residual polishing cell includes a biased conductive polishing surface. In further embodiments, the conductive element is protected from attack by process chemistries.
Abstract:
A semiconductor fabrication system includes a chemical mechanical polishing system, a cassette holding area enclosed by a wall and having a door openable by an operator to place one or more cassettes into the cassette holding area, a robot configured to transfer substrates between a cassette in the cassette holding area to the chemical mechanical polishing system, a computer controller configured to cause the robot to move to a home position, a circuit breaker in a power supply line to the robot, a door sensor to detect whether the door is open, a robot presence sensor to detect whether the robot is in the home position, and control circuitry configured to receive signals from the door sensor and the robot presence sensor and cause the circuit breaker to cut power to the robot if the door is open and the robot is not in the home position.
Abstract:
Implementations described herein protect a retaining ring for a polishing system from corrosive polishing chemistries. In one embodiment, a retaining ring has a ring-shaped body having a top surface, an inside diameter sidewall, an outer diameter sidewall and a bottom surface. The inside diameter side wall is configured to circumscribe a substrate. The ring shaped body has a rigid ring-shaped portion, a polymeric ring-shaped portion stacked on the rigid ring-shaped portion and covering at least three sides of the rigid ring-shaped portion, a plurality of grooves formed in the bottom surface, and a plurality of wash ports formed through the polymeric ring-shaped portion, wherein the wash ports are isolated from the rigid ring-shaped portion.
Abstract:
A method and apparatus for a planarizing or polishing article for Electrochemical Mechanical Planarization (ECMP) is disclosed. The polishing article is a pad assembly (122) having a plurality of conductive domains and a plurality of abrasive domains on a processing surface. The abrasive domains and the conductive domains comprise a plurality of contact elements (150) that are adapted to bias a semiconductor substrate (115) while also providing abrasive qualities to enhance removal of material deposited on the substrate.
Abstract:
Embodiments of a polishing article for processing a substracte are provided. In one embodiment, a polishing article for processing a substrate comprises a fabric layer having a conductive layer disposed thereover. The conductive layer may be woven or non-woven. The conductive layer may be comprised of a soft material and, in one embodiment, the exposed surface may be planar.
Abstract:
An apparatus and a method with fluid flow assist elements for electrochemical mechanical processing is provided in this invention. In one embodiment, the apparatus includes a first conductive layer having an upper surface adapted to contact a substrate, a second conductive layer disposed below the first conductive layer, an isolation layer disposed between the conductive layers, and a plurality of apertures, each having a first end formed through the first conductive layer and a second end formed through the second conductive layer, wherein the second ends of at least two apertures are laterally coupled by a channel.
Abstract:
Polishing compositions and methods for removing conductive materials from a substrate surface are provided. In one aspect, a method is provided for processing a substrate to remove conductive material disposed over narrow feature definitions formed in a substrate at a higher removal rate than conductive material disposed over wide feature definitions formed in a substrate by an electrochemical mechanical polishing technique, and then polishing the substrate by at least a chemical mechanical polishing technique.
Abstract:
Compositions and methods for processing a substrate having a conductive material layer disposed thereon are provided. In one embodiment, a composition for processing a substrate having a conductive material layer disposed thereon is provided which composition includes an acid based electrolyte, a chelating agent, a corrosion inhibitor, a passivating polymeric material, a pH adjusting agent, a solvent, and a pH between about 3 and about 10. The composition is used in a method to form a passivation layer on the conductive material layer, abrading the passivation layer to expose a portion of the conductive material layer, applying a bias to the substrate, and removing the conductive material layer.