Abstract:
A retaining ring for a polishing system is disclosed. The retaining ring has a process-resistant coating over a portion thereof. The process-resistant coating is a thin, smooth, conformal layer that is resistant to wear and chemical attack. The process-resistant coating is formed by a method that includes vapor deposition from a precursor gas mixture, which may deposit polyparaxyxylene from a gas mixture comprising paracyclophane. Adhesion of the process-resistant coating to the retaining ring may be enhanced by treating the surface of the ring prior to forming the coating. Resistance of the coating to the process may be further enhanced by treating the surface of the coating with an etching or deposition gas to impart texture.
Abstract:
Implementations described herein protect a retaining ring for a polishing system from corrosive polishing chemistries. In one embodiment, a retaining ring has a ring-shaped body having a top surface, an inside diameter sidewall, an outer diameter sidewall and a bottom surface. The inside diameter side wall is configured to circumscribe a substrate. The ring shaped body has a rigid ring-shaped portion, a polymeric ring-shaped portion stacked on the rigid ring-shaped portion and covering at least three sides of the rigid ring-shaped portion, a plurality of grooves formed in the bottom surface, and a plurality of wash ports formed through the polymeric ring-shaped portion, wherein the wash ports are isolated from the rigid ring-shaped portion.
Abstract:
Some implementations of a retaining ring has an inner surface having a first portion formed of multiple planar facets and a second portion that adjoins the first portion along a boundary and includes a frustoconical surface that is sloped downwardly from outside in. Some implementations of the retaining ring have a crenellated or serpentine inner surface, and/or an inner surface with alternating region of different surface properties or different tilt angles.
Abstract:
An edge ring and process for fabricating an edge ring are disclosed herein. In one embodiment, an edge ring includes an annular body and a plurality of thermal breaks disposed within the annular body. The thermal breaks are disposed perpendicular to a center line of the annular body of the edge ring.
Abstract:
A retaining ring for a chemical mechanical polishing carrier head having a mounting surface for a substrate is provided herein. In some embodiments, the retaining ring may include an annular body have a central opening, a channel formed in the body, wherein a first end of the channel is proximate the central opening, and a sensor disposed within the channel and proximate the first end, wherein the sensor is configured to detect acoustic and/or vibration emissions from processes performed on the substrate.
Abstract:
Embodiments of the present disclosure generally relate to chemical mechanical polishing (CMP) of substrates. In one embodiment, a carrier head for a CMP apparatus is disclosed herein. The carrier head includes a body, a retaining ring, and a sensor assembly. The retaining ring is coupled to the body. The sensor assembly is positioned at least partially in the body. The sensor assembly includes a transmitter, an antenna, and a vibrational sensor. The transmitter has a first end and a second end. The antenna is coupled to the first end of the transmitter. The vibrational sensor is coupled to the second end. The vibrational sensor is configured to detect vibration during chemical mechanical processes with respect to radial, azimuthal, and angular axes of the carrier head.
Abstract:
Implementations described herein generally relate to additive manufacturing. More particularly, implementations disclosed herein relate to formulations and processes for forming articles via a three-dimensional printing (or 3D printing) process. In one implementation, a method of additive manufacturing is provided. The method comprises dispensing a first layer of a feed material over a platen. The feed material includes a powder mixture comprising a plurality of particulates comprising a first material and a plurality of particulates comprising a second material different from the first material. The method further comprises directing a laser beam to heat the feed material at locations specified by data stored in a computer readable medium. The laser beam heats the feed material to a temperature sufficient to fuse at least the second material.
Abstract:
Embodiments of the present disclosure generally provide magnetron configurations that provide more efficient and/or more uniform cooling characteristics and methods for forming the magnetrons. The magnetron includes one or more flow directing structures disposed between parallel cooling fins. The flow directing structures direct air flow across various surfaces of the cooling fins and prevent that otherwise would be obstructed by magnetron components, reducing the incidence and/or magnitude of hot spots on the cooling fins and/or on other magnetron components. The flow directing structures also adjust flow rates to improve cooling efficiency.
Abstract:
A pressure control assembly for a carrier head of a polishing apparatus includes a pressure supply line configured to fluidically connect to a chamber of a carrier head, a sensor to responsive to pressure in the chamber and configured to generate a signal representative of the pressure, and a pneumatic control unit configured to receive the signal, to control a pressure applied to the pressure supply line, and to record the signal in a non-transitory storage media of a storage device removably attached to the pneumatic control unit.
Abstract:
An external clamp ring for a chemical mechanical polishing (CMP) carrier head having a hydrophobic coating, and a carrier head having the same are described herein. In one embodiment, an external clamp ring is provided that includes a cylindrical body having an outer cylindrical wall and an inner cylindrical wall. A hydrophobic layer disposed is on the outer cylindrical wall.