Abstract:
A method, and associated apparatus and computer program, to determine corrections for a parameter of interest, such as critical dimension, of a patterning process. The method includes determining an exposure control correction for an exposure control parameter and, optionally, determining a process control correction for a process control parameter, based upon a measurement of the parameter of interest of a structure, and an exposure control relationship and a process control relationship. The exposure control relationship describes the dependence of the parameter of interest on the exposure control parameter and the process control relationship describes the dependence of the parameter of interest on the process control parameter. The exposure control correction and process control correction may be co-optimized to minimize variation of the parameter of interest of subsequent exposed and processed structures relative to a target parameter of interest.
Abstract:
A method including: computing a value of a first variable of a pattern of, or for, a substrate processed by a patterning process by combining a fingerprint of the first variable on the substrate and a certain value of the first variable; and determining a value of a second variable of the pattern based at least in part on the computed value of the first variable.
Abstract:
Disclosed is metrology apparatus for measurement of a diffractive structure on a substrate, comprising: a radiation source operable to provide first radiation for excitation of the diffractive structure, said first radiation having a first wavelength; a detection arrangement operable to detect at least diffracted second radiation comprising a second harmonic of said first radiation, said diffracted second radiation being generated from said diffractive structure and/or substrate and diffracted by said diffractive structure; and a processing arrangement operable to determine a parameter of interest relating to said diffractive structure from at least said diffracted second radiation.
Abstract:
A method to change an etch parameter of a substrate etching process, the method comprising: making a first measurement of a first metric associated with a structure on a substrate before being etched; making a second measurement of a second metric associated with a structure on a substrate after being etched; and changing the etch parameter based on a difference between the first measurement and the second measurement.
Abstract:
A method including determining a first color pattern and a second color pattern associated with a hot spot of a design layout pattern, the design layout pattern configured for transfer to a substrate, and predicting, by a hardware computer system, whether there would be a defect at the hot spot on the substrate caused by overlay error, based at least in part on a measurement of an overlay error between the first color pattern and the second color pattern.
Abstract:
Disclosed herein is a method for determining one or more control parameters of a manufacturing process comprising a lithographic process and one or more further processes, the method comprising: obtaining an image of at least part of a substrate, wherein the image comprises at least one feature manufactured on the substrate by the manufacturing process; calculating one or more image-related metrics in dependence on a contour determined from the image, wherein one of the image -related metrics is an edge placement error, EPE, of the at least one feature; and determining one or more control parameters of the lithographic process and/or said one or more further processes in dependence on the edge placement error, wherein at least one control parameter is determined so as to minimize the edge placement error of the at least one feature.
Abstract:
Disclosed is a method of measuring focus performance of a lithographic apparatus, and corresponding patterning device and lithographic apparatus. The method comprises using the lithographic apparatus to print one or more first printed structures and second printed structures. The first printed structures are printed by illumination having a first non-telecentricity and the second printed structures being printed by illumination having a second non-telecentricity, different to said first non-telecentricity. A focus dependent parameter related to a focus- dependent positional shift between the first printed structures and the second printed structures on said substrate is measured and a measurement of focus performance based at least in part on the focus dependent parameter is derived therefrom.
Abstract:
Disclosed herein are various methods of identifying a hot spot from a design layout or of predicting whether a pattern in a design layout is defective, using a machine learning model. An example method disclosed herein includes obtaining sets of characteristics of performance of hot spots, respectively, under a plurality of process conditions, respectively, in a device manufacturing process; determining, for each of the process conditions, for each of the hot spots, based on the characteristics under that process condition, whether that hot spot is defective; obtaining characteristics of each of the process conditions; obtaining characteristics of each of the hot spots; and training a machine learning model using a training set comprising the characteristics of one of the process conditions, the characteristics of one of the hot spots, and whether that hot spot is defective under that process condition.
Abstract:
Methods of controlling a patterning process are disclosed. In one arrangement, tilt data resulting from a measurement of tilt in an etching path through a target layer of a structure on a substrate is obtained. The tilt represents a deviation in a direction of the etching path from a perpendicular to the plane of the target layer. The tilt data is used to control a patterning process used to form a pattern in a further layer.
Abstract:
A method including obtaining an image of a plurality of structures on a substrate, wherein each of the plurality of structures is formed onto the substrate by transferring a corresponding pattern of a design layout; obtaining a displacement for each of the structures with respect to a reference point for that structure; and assigning, using a hardware computer system, each of the structures into one of a plurality of groups based on the displacement.