Abstract:
Disclosed is a patterning device for patterning product structures onto a substrate and an associated substrate patterned using such a patterning device. The patterning device comprises target patterning elements for patterning at least one target from which a parameter of interest can be inferred. The target patterning elements and product patterning elements for patterning the product structures. The target patterning elements and product patterning elements are configured such that said at least one target has at least one boundary which is neither parallel nor perpendicular with respect to said product structures on said substrate.
Abstract:
A pattern from a patterning device is applied to a substrate by a lithographic apparatus. The applied pattern includes product features and metrology targets. The metrology targets include large targets and small targets which are for measuring overlay. Some of the smaller targets are distributed at locations between the larger targets, while other small targets are placed at the same locations as a large target. By comparing values measured using a small target and large target at the same location, parameter values measured using all the small targets can be corrected for better accuracy. The large targets can be located primarily within scribe lanes while the small targets are distributed within product areas.
Abstract:
Disclosed is target arrangement comprising a first target region having at least a first pitch and at least a second pitch a second target region having at least a third pitch, wherein a portion of the first target region having a second pitch overlaps with a portion of the second target region.
Abstract:
Disclosed is a method and associated apparatus for measuring a characteristic of interest relating to a structure on a substrate. The method comprises calculating a value for the characteristic of interest directly from the effect of the characteristic of interest on at least the phase of illuminating radiation when scattered by the structure, subsequent to illuminating said structure with said illuminating radiation.
Abstract:
Described is a metrology system for determining a characteristic of interest relating to at least one structure on a substrate, and associated method. The metrology system comprises a processor being configured to computationally determine phase and amplitude information from a detected characteristic of scattered radiation having been reflected or scattered by the at least one structure as a result of illumination of said at least one structure with illumination radiation in a measurement acquisition, and use the determined phase and amplitude to determine the characteristic of interest.
Abstract:
An overlay metrology target (600, 900, 1000) contains a plurality of overlay gratings (932-935) formed by lithography. First diffraction signals (740(1)) are obtained from the target, and first asymmetry values (As) for the target structures are derived. Second diffraction signals (740(2)) are obtained from the target, and second asymmetry values (As') are derived. The first and second diffraction signals are obtained using different capture conditions and/or different designs of target structures and/or bias values. The first asymmetry signals and the second asymmetry signals are used to solve equations and obtain a measurement of overlay error. The calculation of overlay error makes no assumption whether asymmetry in a given target structure results from overlay in the first direction, in a second direction or in both directions. With a suitable bias scheme the method allows overlay and other asymmetry-related properties to be measured accurately, even in the presence of two-dimensional overlay structure.
Abstract:
In a dark-field metrology method using a small target, a characteristic of an image of the target, obtained using a single diffraction order, is determined by fitting a combination fit function to the measured image. The combination fit function includes terms selected to represent aspects of the physical sensor and the target. Some coefficients of the combination fit function are determined based on parameters of the measurement process and/or target. In an embodiment the combination fit function includes jinc functions representing the point spread function of a pupil stop in the imaging system.
Abstract:
Methods are disclosed for measuring target structures (32-35) formed by a lithographic process on a substrate (W). A grating structure within said target is smaller than an illumination spot (31) and field of view of a measurement optical system. The optical system has a first branch leading to a pupil plane imaging sensor (19) and a second branch leading to a substrate plane imaging sensor (23). A spatial light modulator (SLM) (24, 124, 224, 324) is arranged in an intermediate pupil plane of the second branch of the optical system. The SLM imparts a programmable pattern of attenuation that may be used to correct for asymmetries between the first and second modes of illumination or imaging. By use of specific target designs and machine-learning processes, the attenuation patterns may also be programmed to act as filter functions, enhancing sensitivity to specific parameters of interest, such as focus.
Abstract:
Disclosed is a method of measuring a periodic structure on a substrate with illumination radiation having at least one wavelength, the periodic structure having at least one pitch. The method comprises configuring, based on a ratio of said pitch and said wavelength, one or more of: an illumination aperture profile comprising one or more illumination regions in Fourier space; an orientation of the periodic structure for a measurement; and a detection aperture profile comprising one or more separated detection regions in Fourier space. This configuration is such that: i) diffracted radiation of at least a pair of complementary diffraction orders is captured within the detection aperture profile, and ii) said diffracted radiation fills at least 80% of the one or more separated detection regions. The periodic structure is measured while applying the configured one or more of illumination aperture profile, detection aperture profile and orientation of the periodic structure.
Abstract:
The disclosure relates to determining a value of a parameter of interest of a patterning process. A plurality of calibration data units is obtained from targets in a metrology process. Each of at least two of the calibration data units represents detected radiation obtained using different respective polarization settings in the metrology process, each polarization setting defining a polarization property of incident radiation of the metrology process and a polarization property of detected radiation of the metrology process. The calibration data units are used to obtain calibration information about the metrology process. A measurement data unit representing detected radiation scattered from a further target is obtained, the further target comprising a structure formed using the patterning process on the substrate or on a further substrate. The value of the parameter of interest is determined using the measurement data unit and the obtained calibration information.