Abstract:
An integrated microfluidic device and its usage are provided. The microfluidic device comprises an upper layer (1) and a lower layer (2), wherein the lower layer (2) is bound to the upper layer (1). The upper layer (1) comprises a micro-channel (3) and the lower layer (2) comprises a micro-well (7) array. The micro-channel (3) is in fluidic connection with the micro-well (7) array, and the height of the micro-channel (3) is greater than the diameter of the oocyte (4) flowing through the micro-channel (3). The integrated microfluidic device has many advantages including low cost, high integration, and convenient operation, and has application prospects in reproductive medicine and the research of fertilization and embryo early development.
Abstract:
Methods and devices for controlling temperature by precise heating without the need of using a temperature sensor are provided. The device comprises a resistive heating element (6), a controller (3), a heating circuit and a temperature sensing circuit. The temperature of the resistive heating element can be determined based on the resistance of the resistive heating element (6), which changes monotonically with its temperature. The resistive heating element (6) thus serves both as a heating element and as a temperature sensor, thereby obviating the need for a separate temperature sensor.
Abstract:
An embodiment of the present invention comprises an automatic multichannel pipettor operating in coordination with a robotic positioner. A volumetrically apportioned pressure dividing manifold equally divides volumetric displacement from a syringe pump among a plurality of pipetting channels for simultaneous aspiration and dispensing. The automatic pipettor can use disposable pipette tips that can be automatically loaded and discarded.
Abstract:
The invention provides methods for detecting differential gene expression in intestinal gastric tissue in a mammal by comparing the expression of specific genes in an intestinal gastric tissue suspected of being cancerous with that of the corresponding adjacent intestinal gastric tissue or a normal gastric mucosa tissue. The methods can be used in diagnosing or monitoring the progression of intestinal gastric cancer and determining the levels of differentiation of intestinal gastric cancer. Systems and kits for methods of the invention are also provided.
Abstract:
The present invention discloses methods for detection of small molecule compounds and its specific biochips. Biochips of the present invention comprise a solid support and carrier-linked small molecules immobilized onto the solid support. The invention also provides methods and kits for detection of small molecule compounds using the biochips of the invention.
Abstract:
In one aspect, a microfluidic device for multiple reactions is provided, which comprises a reaction channel comprising multiple reaction chambers connected to a closed chamber or an elastic balloon outside of the microfluidic device, wherein a wall of the closed chamber is an elastic membrane; and a control channel comprising an elastic side wall, wherein the intersections between the side wall of the control channel with the reaction channel form multiple pneumatic microvalves. In another aspect, a method for conducting multiple reactions using the microfluidic device is provided, which comprises: a) filling the reaction chambers with a sample; and b) applying pressure to the control channel to expand the elastic side wall of the control channel, wherein the expanded elastic side wall forms a pneumatic microvalve that separates the reaction chambers.
Abstract:
An automatic slide loading device for microarray scanner comprises slide holders (1), a carrier device (2) and a positioning chamber (3), wherein the slide holder (1) can hold microarray slides (6) and the slide holder (1) is placed out of the scanning platform of the microarray scanner when the microarray scanner is in off work state, wherein the carrier device (2) is connected to the positioning chamber (3) and the carrier device (2) can load the slide holder (1) into the positioning chamber (3), wherein the positioning chamber (3) is placed above the scanning platform of the microarray scanner and is used to precisely locate the working surface of the microarray slides (6) in the slide holder (1).
Abstract:
Provided are a bubble-based microvalve and a microfluidic chip using the microvalve. Also provided are methods of using the microvalve for manipulating fluid in a microfluidic channel by changing the volume and/or location of the gas in the microvalve.
Abstract:
The present invention provides methods and compositions for diagnosing and guidance of subsequent treatment for cervical cancer or/and cervical dysplasia and prognosis for survival of individuals having cervical cancer or/and cervical dysplasia based on levels or genetic status of certain microRNAs. The present invention also provides compositions comprising agents that decrease the levels of miRNAs and uses thereof for improvement of survival.
Abstract:
A device for biochip hybridization or washing is provided, which comprises a carousel (12), a translational movement controller, a revolving movement controller, and optionally a heating chamber (13). The revolving movement controller controls the revolving movement of the carousel and allows it to move in a wobbling fashion, allowing liquid movement of the hybridization or washing boxes (11) during hybridization and/or washing of biochips on the carousel. The translational movement controller brings the carousel back to horizontal position once the revolving movement controller stops, thereby ensures that the liquid do not spill out. The heating chamber circulates hot air within the device, thereby ensures that the hybridization and washing in a thermostatic condition.