Abstract:
A device and method are described for transmitting tissue conductance communication (TCC) signals. A device may be is configured to establish a transmission window by transmitting a TCC test signal at multiple time points over a transmission test period to a receiving device and detect at least one response to the transmitted TCC test signals performed by the receiving device. The IMD is configured to establish the transmission window based on the at least one detected response so that the transmission window is correlated to a time of relative increased transimpedance between a transmitting electrode vector and receiving electrode vector during the transmission test period.
Abstract:
A ventricularly implantable medical device that includes a sensing module that is configured to detect an atrial fiducial and identify an atrial contraction based at least on part on the detected atrial fiducial. Control circuitry in the implantable medical device is configured to deliver a ventricular pacing therapy to a patient's heart based at least in part on the identified atrial contraction, and can automatically switch or revert the ventricular pacing therapies on the fly.
Abstract:
An apparatus for applying at least one electric pulse to a living myocardial tissue comprises an input receiving an electric signal representing a present electric activity of the myocardial tissue; a signal processor (11) processing the electric signal to determine a measure of the present complexity of the electric signal in the state space and to output a control signal (13) when the complexity measure is lower than a predetermined complexity threshold value; a pulse generator configured to generate the at least one electric pulse in response to the control signal; and an output configured to output the at least one electric pulse to the myocardial tissue.
Abstract:
An extra-cardiovascular implantable cardioverter defibrillator (ICD) having a low voltage therapy module and a high voltage therapy module is configured to select, by a control module of the ICD, a pacing output configuration from at least a low-voltage pacing output configuration of the low voltage therapy module and a high-voltage pacing output configuration of the high voltage therapy module. The high voltage therapy module includes a high voltage capacitor having a first capacitance and the low voltage therapy module includes a plurality of low voltage capacitors each having up to a second capacitance that is less than the first capacitance. The ICD control module controls a respective one of the low voltage therapy module or the high voltage therapy module to deliver extra-cardiovascular pacing pulses in the selected pacing output configuration via extra-cardiovascular electrodes coupled to the ICD.
Abstract:
Systems and methods for coordinating treatment of abnormal heart activity using multiple implanted devices within a patient. In one example, a leadless cardiac pacemaker (LCP) may receive signals related to one or more physiological conditions of a patient, wherein the LCP may be configured to deliver ATP therapy to a heart. The LCP may also be configured, based at least in part on the received signals, to detect an arrhythmia. In response to detecting an arrhythmia, the LCP may determine whether to deliver ATP therapy to the heart. If the LCP determines to deliver ATP therapy, the LCP may deliver ATP therapy to the heart.
Abstract:
A device comprising a three-dimensional polymeric element and an electronic element integrated with the polymeric element is disclosed. The electronic element is made up of one or more electrode(s) each individually connectable to a measuring device and/or a controller, and each independently having a thin electrically-isolating layer deposited thereon such that the electrode is exposed to an environment surrounding the electrode at one or more pre-determined locations over the electrode. The device can include cells and/or tissue and/or a therapeutically active agent incorporated within the polymeric material. Processes of fabricating the device, systems for operating the device and methods utilizing same are also disclosed.
Abstract:
Techniques identify origins of ventricular arrhythmias (e.g., ventricular tachycardia or premature ventricular complexes) including exit sites or other sites using a single or multi- lead electrocardiogram (ECG) assembly. The ECG assembly is used to map an organ into a series of different three-dimensional (3D) regions. Pace maps or ventricular arrhythmia signals are used in form of ECG signals along with a supervised learning methods to pinpoint the potential origin of VT, i.e., exit sites, in the various regions.
Abstract:
The disclosure describes techniques for delivering electrical stimulation to decrease the ventricular rate response during an atrial tachyarrhythmia, such as atrial fibrillation. AV nodal stimulation is employed during an atrial tachyarrhythmia episode with rapid ventricular conduction to distinguish ventricular tachyarrhythmia from supraventricular tachycardia and thereby prevent delivering inappropriate therapy to a patient.
Abstract:
A multi-modal electrotherapy apparatus including circuitry for administering defibrillation therapy and for administering medium voltage therapy (MVT). A combined-use capacitor bank of at least one capacitor stores energy to be administered as defibrillation therapy and MVT. Combined-use discharge circuitry electrically is coupled between the combined-use capacitor bank and patient terminals for selectively administering energy from the capacitor bank according to a plurality of controllable waveforms as either defibrillation therapy or MVT. A controller is configured to cause the discharge circuitry to apply the MVT from the capacitor bank while the capacitor bank undergoes charging in preparation for administration of the defibrillation therapy.
Abstract:
A medical device, comprising: a memory; and a processing module configured to retrieve electrogram (EGM) data for N cardiac cycles from the memory, wherein N is an integer greater than 1, categorize each of the N cardiac cycles into one of a plurality of categories based on a morphology of the N cardiac cycles, perform comparisons be¬ tween pairs of the N cardiac cycles, each of the comparisons between two cardiac cycles comprising: detecting a mismatch between the two cardiac cycles when the two cardiac cycles are in different categories; and detecting a match between the two cardiac cycles when the two cardiac cycles are in the same category, wherein the processing module is further configured to classify the rhythm of the N cardiac cycles based on a number of detected matches and detected mismatches.