Abstract:
Die Erfindung betrifft ein Verfahren zur Auswertung von Signalen der Fluoreszenzrastermikroskopie mit simultaner Anregung und Detektion der Fluoreszenz in verschiedenen Fokalebenen einer Probe mittels konfokaler Laser-Scanning-Mikroskopie. Die Aufgabe der Erfindung, eine Möglichkeit zur Auswertung von Signalen der Fluoreszenzrastermikroskopie ohne die an einer Konfokalblende üblichen Signalverluste zu finden, wird erfindungsgemäß gelöst durch Einkoppeln eines Beleuchtungsstrahls in einen mikroskopischen Beobachtungsstrahlengang, der ein Messvolumen auf ein in der Bildebene angeordnetes Detektorarray abbildet, Fokussieren des Beleuchtungsstrahls, der eine strahlformende Phasenmaske zur Erzeugung eines langgestreckten Fokus im Messvolumen durchläuft, Sammeln und Kollimieren und Weiterleiten von im Messvolumen erzeugtem Fluoreszenzlicht auf eine diffraktive Optik, die die Lichtstrahlen in unterschiedliche Beugungsordnungen aufspaltet und eine unterschiedliche sphärische Phase aufprägt, Abbilden der unterschiedlichen Beugungsordnungen auf Detektorbereiche des Detektorarrays, sodass Fluoreszenzlicht aus verschieden tiefen Fokalebenen des Messvolumens unterschiedlichen Beugungsordnungen zugeordnet wird, und Zuordnen der Fluoreszenzsignale, die aus unterschiedlichen Fokalebenen des Messvolumens durch Übersprechen überlagert sind, zu definierten Fokalebenen mittels korrelationsbasierter Zuordnung auf Basis unterscheidbaren Blinkverhaltens von fluoreszierenden Farbstoffen.
Abstract:
Strahlablenkeinheiten in Lichtrastermikroskopen werden üblicherweise in zur Objektivpupille konjugierten Ebenen angeordnet. Die Abtastungsoptik, die zur Erzeugung der konjugierten Pupillenebenen benötigt wird, ist aufwendig und wenig Ii cht effizient, da sie unterschiedliche Abbildungsfehler wie Bildfeldwölbung und Farbquerfehler kompensieren muss. Die Erfindung soll eine höhere Bildgüte, eine einfachere Justage und einen geringerer Lichtverlust ermöglichen. Zu diesem Zweck umfasst das optische System einen Hohlspiegel (36) zum Abbilden eines jeweiligen Punktes der ersten und der zweiten Strahlablenkeinheit (30A, 30B) aufeinander, wobei der Hohlspiegel (36) und die erste Strahl ablenkeinheit (30A) und die zweite Strahlablenkeinheit (30B) so angeordnet sind, dass der Beleuchtungsstrahlengang am Hohlspiegel (36) genau einmal reflektiert wird und eine dabei durch den Hohlspiegel (36) verursachte erste Verzeichnung und eine durch die erste und die zweite Strahlablenkeinheit (30A, 30B) verursachte zweite Verzeichnung der Abbildung einander zumindest teilweise kompensieren.
Abstract:
1. Multifokales Fluoreszenzrastermikroskop 2.1. Fluoreszenzrastermikroskope (1 ) mit einem Beobachtungsstrahlengang (A) von einem Messvolumen bis zu einer Bildebene (BE), einem Strahlvereiniger (6) zur Ankopplung eines Beleuchtungssystems (11 ) und einer in der Bildebene (BE) angeordneten Blende (15) zeigen aufgrund der sequentiellen Abtastung einen langsamen Bildaufbau und belasten die Probe (P) durch ineffiziente Nutzung des Anregungslichts. Ein verbessertes Fluoreszenzrastermikroskop soll simultan Fluoreszenz aus unterschiedlichen Fokalebenen jeweils quasi-konfokal detektieren. 2.2. Das gelingt dadurch, dass der Beobachtungsstrahlengang (A) zwischen dem Strahlvereiniger (6) und der Bildebene (BE) eine erste diffraktive Optik (7) zur Aufspaltung von Lichtstrahlen in Strahlenbündel längs unterschiedlicher Beugungsordnungen, die den Lichtstrahlen eine von den anderen Beugungsordnungen verschiedene sphärische Phase aufprägt, eine zweite diffraktive Optik (13) zur Kompensation chromatischer Aberrationen der aufgespalteten Strahlenbündel und eine Sammeloptik (8) zur Fokussierung der aufgespalteten Strahlenbündel in die Bildebene (BE) umfasst. 2.3. Lebenswissenschaften
Abstract:
Die Erfindung betrifft ein funktionsintegriertes Laser-Scanning-Mikroskop, ausgebildet zur Abtastung einer Probe mit einer Laserbeleuchtung wahlweise in einem Konfokal-, Linien- oder Weitfeld-Betriebsmodus, umfassend − eine Laserlichtquelle, einen Beleuchtungs- und Detektionsstrahlengang, eine Detektionseinrichtung und mindestens ein Objektiv, jeweils ausgebildet zur Nutzung für jeden wählbaren Betriebsmodus, wobei − der Beleuchtungs- und Detektionsstrahlengang optische Mittel zur Konfiguration der Laserbeleuchtung, mindestens einen Scanner zur Abtastung der Probe mit der Laserbeleuchtung, und einen Strahlteiler zur Trennung von Beleuchtungs- und Detektionslicht aufweist, und − im Detektionsstrahlengang steuerbare optische Elemente zur Änderung der Strahlführung in Abhängigkeit vom jeweils gewählten Betriebsmodus vorgesehen sind. Die steuerbaren optischen Baugruppen sind über eine Befehlseingabeeinrichtung mit einer Steuerschaltung verbunden, die zur Umschaltung auf den jeweils gewünschten Betriebsmodus ausgebildet ist, und es ist Hard- und Software zum Generieren von Bildern der Probe aus den von der Detektionseinrichtung abgegebenen elektronischen Bildsignalen vorhanden.
Abstract:
Lichtrastermikroskope umfassen oft eine Abtastungsoptik (35) zum Erzeugen einer zur Pupillenebene des Mikroskopobjektivs konjugierten Pupillenebene (ΡΕ') und eine variabel einstellbare Strahlablenkeinheit (30) in der konjugierten Pupillenebene, wobei zwischen dem Mikroskopobjektiv und der Abtastungsoptik ein Zwischenbild (Zb1) liegt und die Lichtstrahlen in der konjugierten Pupillenebene kollimiert sind. Solche Abtastungsoptiken sind aufwendig und nicht lichteffizient, da sie unterschiedliche Abbildungsfehler wie Bildfeldwölbung und Farbquerfehler kompensieren müssen. Zudem ist aufgrund des geringen Abstands der konjugierten Pupillenebene von der Abtastungsoptik der für die Ablenkeinheit verfügbare Bauraum klein. Die Erfindung soll den Einsatz einer einfacheren Abtastungsoptik ermöglichen und mehr Bauraum verfügbar machen. Das gelingt dadurch, dass die Abtastungsoptik ein zweites Zwischenbild (Zb2) über die Strahlablenkeinheit in das erste Zwischenbild abbildet, wobei das zweite Zwischenbild räumlich gekrümmt ist. Die Ablenkeinheit ist nicht mehr in einem kollimierten, sondern in einem konvergenten Abschnitt des Strahlengangs angeordnet. Die Abtastungsoptik braucht dann in ihren optischen Eigenschaften und ihrer Güte eher lediglich einem Okular als einem herkömmlichen Abtastobjektiv zu entsprechen. Nichtlineare Mikroskopie.
Abstract:
A method for operating a light microscope comprises emitting and guiding a plurality of illumination light beams towards a specimen (6) to form a plurality of separated illumination light spots (2A, 2B, 2C, 2D) at the specimen; and guiding detection light beams (11) coming from the illumination light spots (2A, 2B, 2C, 2D) to a detector (10) comprising a plurality of sensor arrays (31-34). Each sensor array (31-34) comprises photon-counting detector elements (40), and detection light beams (11) from different illumination light spots (2A, 2B, 2C, 2D) are guided to different sensor arrays (31-34). Measured signals from the sensor arrays (31-34) are analysed to determine positional information about the light spots (15) on the sensor arrays (31 -34). It is adjusted where the light spots (15) hit the sensor arrays (31-34) based on the positional information. A corresponding light microscope is furthermore disclosed.
Abstract:
Die Erfindung betrifft Verfahren zur Bestimmung und Kompensation von geometrischen Abbildungsfehlern, die bei der Abbildung eines Objektes durch sequentielle Einzel- oder Multispotabtastung mittels eines mikroskopischen Abbildungssystems entstehen, umfassend folgende Verfahrensschritte: - Festlegen eines Bezugsobjektes mit einer definierten ebenen Struktur, - Erzeugung eines von geometrischen Abbildungsfehlern freien elektronischen Bilddatensatzes dieser Struktur, - Erzeugen mindestens eines elektronischen Ist-Bilddatensatzes mit dem Abbildungssystem, - Vergleichen des Ist-Bilddatensatzes mit dem Referenz-Bilddatensatz bezüglich der Orte derjenigen Bildpunkte, die jeweils denselben Objektpunkt als Ursprung haben, - Bestimmen von Orts-Abweichungen im Ist-Bilddatensatz gegenüber dem Referenz-Bilddatensatz, - Speichern ermittelter Orts-Abweichungen als Korrektionsdaten, - Kompensation der geometrischen Abbildungsfehler durch Korrektur der Orts-Abweichungen im Ist-Bilddatensatz anhand der Korrektionsdaten.
Abstract:
Ein Verfahren zur Bildaufnahme mit einem Lichtmikroskop umfasst die Schritte: Leiten von Beleuchtungslicht (12) zu einer Probe (35); Leiten von Detektionslicht (15) von der Probe (35) zu mehreren photonenzählenden Sensorelementen (61), welche jeweils nacheinander mehrere Zählwerte (x) aufnehmen; Bilden (S3) mehrerer zu analysierender Zählwerthäufigkeitsverteilungen (81-83) sowie zumindest einer Referenz-Zählwerthäufigkeitsverteilung (80) aus den Zählwerten (x); Berechnen einer Ähnlichkeit zwischen jeweils einer der zu analysierenden Zählwerthäufigkeitsverteilungen (81-83) und der Referenz-Zählwerthäufigkeitsverteilung (80); und Identifizieren von Sensorelementen (61) als übersteuert, in Abhängigkeit von der berechneten Ähnlichkeit der zugehörigen zu analysierenden Zählwerthäufigkeitsverteilungen(en) (81-83). Zudem wird ein entsprechendes Lichtmikroskop offenbart.
Abstract:
A light microscope comprises a light source (10) for illuminating a specimen (35), a photon-counting detector array (60) with a plurality of photon-counting detector elements (61-64) for measuring detection light (15) coming from the specimen (35), wherein the photon-counting detector elements (61-64) are configured to output respective measured photon count rates, and a control device (70) for controlling the photon-counting detector array (60). The control device (70) is configured to individually influence the measurable photon count rates which are simultaneously measurable with different photon-counting detector elements (61-64) and/or which are consecutively measurable with the same photon-counting detector element (61). Furthermore, in an imaging method the measurable photon count rates of photon-counting detector elements are individually influenced to increase the signal-to-noise ratio for the photon-counting detector array.
Abstract:
Die Erfindung betrifft eine optische Anordnung zum Scannen von Anregungsstrahlung und/oder Manipulationsstrahlung in einem Laser-Scanning-Mikroskop und weist folgende Komponenten auf: eine Scanoptik als erste fokussierende Einrichtung zum Bereitstellen einer ersten Pupillenebene, eine erste Strahlumlenkeinrichtung, die durch einen in der ersten Pupillenebene angeordneten ersten Scanner gebildet ist, zum Scannen der Anregungsstrahlung und/oder Manipulationsstrahlung in einer ersten Koordinatenrichtung, eine zweite fokussierende Einrichtung zum Erzeugen einer zweiten Pupillenebene, die zu der ersten Pupillenebene optisch konjugiert ist, mit einer zweiten Strahlumlenkeinrichtung zum Umlenken der Anregungsstrahlung und/oder Manipulationsstrahlung, die in der zweiten Pupillenebene angeordnet ist. Die erfindungsgemäße optische Anordnung ist dadurch gekennzeichnet,dass eine dritte fokussierende Einrichtung vorhanden ist zum Erzeugen einer dritten Pupillenebene, die zu der ersten Pupillenebene optisch konjugiert ist, dass in der dritten Pupillenebene eine dritte Strahlumlenkeinrichtung angeordnet ist zum Umlenken der Anregungsstrahlung und/oder Manipulationsstrahlung, dass ein variables Strahlumlenkmittel vorhanden ist zum Umschalten eines optischen Strahlengangs zwischen einem ersten Strahlweg und einem zweiten Strahlweg. In einem weiteren Gesichtspunkt bezieht sich die Erfindung auf ein Laser-Scanning-Mikroskop.