Abstract:
There is provided a transparent wearable data display comprising: a source of collimated light; a means for deflecting said collimated light into a scanned beam; a first array comprising one column and integer N TOWS of switchable grating elements sandwiched between first and second parallel transparent substrates, the substrates together functioning as a first light guide; an second array comprising M columns and N rows of switchable grating elements sandwiched between third and fourth, parallel transparent substrates the substrates together functioning as a second light guide; transparent electrodes applied to opposing faces of the first and second and the third and fourth substrates. Hie apparatus further comprises a first coupling means tor directing the scanned beam into a first TIR light path between the outer surfaces of the first lightguide along the first array column; and a second coupling means for directing the first HR light into a second TIR path between the outer surfaces of the second lightguide along a row of elements of the second array.
Abstract:
A microscopy system which includes a light source for illuminating a sample; an objective lens for capturing light emitted from the illuminated sample to form a signal beam; and a dispersive optical element through which the signal beam is directed, wherein the dispersive optical element converts the signal beam to a spatially coherent signal beam.
Abstract:
A Talbot-illuminated imaging system for focal plane tuning, the device comprising a Talbot element, a tunable illumination source, a scanning mechanism, a light detector, and a processor. The element generate scan array of focused light spots at a focal plane. The tunable illumination source shifts the focal plane to a plane of interest by adjusting a wavelength of light incident the Talbot element. The scanning mechanism scans an object across an array of focused light spots in a scanning direction. The light detector determines time-varying light data associated with the array of focused light spots as the object scans across the array of light spots. The processor constructs an image of the object based on the time-varying data.
Abstract:
The present disclosure provides apparatuses and methods for color imaging and an increased field of view using spectrally encoded endoscopy techniques. At least one of the apparatuses includes an illumination unit having two or more spectrally dispersive gratings positioned, for example, on different planes or on the same plane but having grating vectors at an angle to each other such that bands of spectrally dispersed light propagating from the gratings propagate on different planes.
Abstract:
L'invention concerne un dispositif d'affichage tête haute, notamment pour véhicule automobile, comprenant au moins une source laser (4, 5, 6) produisant un faisceau lumineux (10), des moyens de formation d'une image dans un plan image intermédiaire (111), un élément semi-réfléchissant (126) formant une image virtuelle (130) de ladite image dans le plan intermédiaire (111), caractérisé en ce que le dispositif d'affichage tête haute comporte en outre : des moyens de diffraction (140) placés dans le plan image intermédiaire (111) et diffractant le faisceau (10) en une pluralité de faisceaux de diffraction d'ordre zéro (40) et d'ordre supérieur (30).
Abstract:
Disclosed are apparatus and methods for inspecting or measuring a specimen. A system comprises an illumination channel for generating and deflecting a plurality of incident beams to form a plurality of spots that scan across a segmented line comprised of a plurality of scan portions of the specimen. The system also includes one or more detection channels for sensing light emanating from a specimen in response to the incident beams directed towards such specimen and collecting a detected image for each scan portion as each incident beam's spot is scanned over its scan portion. The one or more detection channels include at least one longitudinal side channel for longitudinally collecting a detected image for each scan portion as each incident beam's spot is scanned over its scan portion.
Abstract:
1. Multifokales Fluoreszenzrastermikroskop 2.1. Fluoreszenzrastermikroskope (1 ) mit einem Beobachtungsstrahlengang (A) von einem Messvolumen bis zu einer Bildebene (BE), einem Strahlvereiniger (6) zur Ankopplung eines Beleuchtungssystems (11 ) und einer in der Bildebene (BE) angeordneten Blende (15) zeigen aufgrund der sequentiellen Abtastung einen langsamen Bildaufbau und belasten die Probe (P) durch ineffiziente Nutzung des Anregungslichts. Ein verbessertes Fluoreszenzrastermikroskop soll simultan Fluoreszenz aus unterschiedlichen Fokalebenen jeweils quasi-konfokal detektieren. 2.2. Das gelingt dadurch, dass der Beobachtungsstrahlengang (A) zwischen dem Strahlvereiniger (6) und der Bildebene (BE) eine erste diffraktive Optik (7) zur Aufspaltung von Lichtstrahlen in Strahlenbündel längs unterschiedlicher Beugungsordnungen, die den Lichtstrahlen eine von den anderen Beugungsordnungen verschiedene sphärische Phase aufprägt, eine zweite diffraktive Optik (13) zur Kompensation chromatischer Aberrationen der aufgespalteten Strahlenbündel und eine Sammeloptik (8) zur Fokussierung der aufgespalteten Strahlenbündel in die Bildebene (BE) umfasst. 2.3. Lebenswissenschaften
Abstract:
A miniature scan engine module for bar code reading and data collection systems utilizes a light source (44) and a light collector (42), which in one embodiment, are flexurally supported on a platform (62) which reciprocates (88) on pivots defined by flexures (96). The optical collector faces the bar code and pivots with the scanning beam source (a laser diode). A diffraction grating or Fresnel lens on the surface of the optical collector which faces the code directs the incoming light so that it propagates internally in a substrate within the body of the collector, i.e. in the optic itself and without air paths which require addition volume in the module, to a photodetector (68). The scan engine can be configured so that it occupies a volume of less than 1 cubic inch. A data collection system, in the form of a portable terminal, has a housing which provides a handle (12) and a receptacle (18) for a terminal unit (14) which is separable from the housing.
Abstract:
In line-scan scanning laser ophthalmoscopy (SLO) a narrowband of wavelengths is required. For greater flexibility the frequencies of this narrowband should be selectable. This is possible using a broadband tunable single mode source, but such a solution is expensive. A system is provided in which an extended broadband source is used. Light from the extended source passes to a diffraction grating, which introduces a wavelength dependent angular separation when reflecting the light. By rotating the diffraction grating, only light of a selectable narrowband passes through a fixed output slit for use by the line-scan SLO system. Alternatively, the diffraction grating can be fixed and a rotatable mirror lying between the diffraction grating and the output slit can be used to select the wavelengths reaching the line-scan SLO system.