Abstract:
Ein Mikroskopsystem umfasst mehrere Mikroskopmodule, welche zur Datenübertragung miteinander verbunden sind. Das Mikroskopsystem ist gekennzeichnet durch einen zentralen Taktgeber, dessen Taktsignal an alle Mikroskopmodule gegeben wird. Die Mikroskopmodule sind dazu eingerichtet, das Taktsignal oder einen hieraus abgeleiteten Takt als internen Takt zu verwenden. Zudem wird ein entsprechendes Verfahren zum Betreiben eines solchen Mikroskopsystems beschrieben.
Abstract:
A medical imaging system (10) including an optical branching device (101) having a plurality of optical paths for guiding light for imaging a target comprising a biotissue, each of the optical paths corresponding to an optical port connectable to an external device for imaging, wherein at least one path of the plurality of optical paths is configured both to guide the irradiation light to the biotissue and to guide light from the biotissue, and wherein the optical branching device includes a plurality of prisms and at least one joint surface.
Abstract:
Beschrieben ist ein Lichtblattmikroskop (10), umfassend eine Beleuchtungsoptik (12) zum Erzeugen eines Lichtblatts in einem Zwischenbildraum (18), eine beidseitig telezentrisch ausgebildete Transportoptik (14) zum Abbilden des in dem Zwischenbildraum (18) erzeugten Lichtblatts in eine Probe und zum Abbilden eines mit dem Lichtblatt beleuchteten Bereichs der Probe als Zwischenbild in den Zwischenbildraum (18), und eine Detektionsoptik (16) zum Abbilden des in dem Zwischenbildraum (18) erzeugten Zwischenbildes auf einen Detektor (30). Die optischen Achsen (O 1 , O 2 , O 3 ) der Beleuchtungsoptik (12), der Transportoptik (14) und der Detektionsoptik (16) schneiden einander in dem Zwischenbildraum (18). In der Transportoptik (14) ist ein Abtastelement (50) angeordnet, durch welches das Lichtblatt in der Probe quer zur optischen Achse (O 2 ) der Transportoptik (14) bewegbar ist.
Abstract:
A novel method is disclosed to allow for the simultaneous capture of image data from multiple depths of a volumetric sample. The method allows for the seamless acquisition of a 2D or 3D image, while changing on the fly the acquisition depth in the sample. This method can also be used for auto focusing. Additionally this method of capturing image data from the sample allows for optimal efficiency in terms of speed, and light sensitivity, especially for the herein mentioned purpose of 2D or 3D imaging of samples when using a tilted configuration as depicted in Fig. 2. The method may be particularly used with an imaging sensor comprising a 2D array of pixels in an orthogonal XY coordinate system where gaps for electronic circuitry are present. Also other imaging sensor may be used. Further, an imaging device is presented which automatically carries out the method.
Abstract:
Calibrating a scanning interferometry imaging system includes: configuring the scanning interferometry imaging system for operation with an interference objective using light having a narrowband wavelength spectrum; using the scanning interferometry imaging system to direct measurement light and reference light along different paths and to overlap the measurement and reference light on a detector, the measurement and reference light having the narrowband wavelength spectrum; scanning an optical path length difference between the measurement light and the reference light at the detector while acquiring intensity data using the detector, the detector acquiring the intensity data at a frame rate and the scanning being performed at a scan speed; determining information about the scan speed based on the acquired intensity data, geometric information about the scanning interferometry imaging system, and the narrowband wavelength spectrum; and calibrating the scanning interferometry imaging system based on the information about the scan speed.
Abstract:
Die Erfindung betrifft ein funktionsintegriertes Laser-Scanning-Mikroskop, ausgebildet zur Abtastung einer Probe mit einer Laserbeleuchtung wahlweise in einem Konfokal-, Linien- oder Weitfeld-Betriebsmodus, umfassend − eine Laserlichtquelle, einen Beleuchtungs- und Detektionsstrahlengang, eine Detektionseinrichtung und mindestens ein Objektiv, jeweils ausgebildet zur Nutzung für jeden wählbaren Betriebsmodus, wobei − der Beleuchtungs- und Detektionsstrahlengang optische Mittel zur Konfiguration der Laserbeleuchtung, mindestens einen Scanner zur Abtastung der Probe mit der Laserbeleuchtung, und einen Strahlteiler zur Trennung von Beleuchtungs- und Detektionslicht aufweist, und − im Detektionsstrahlengang steuerbare optische Elemente zur Änderung der Strahlführung in Abhängigkeit vom jeweils gewählten Betriebsmodus vorgesehen sind. Die steuerbaren optischen Baugruppen sind über eine Befehlseingabeeinrichtung mit einer Steuerschaltung verbunden, die zur Umschaltung auf den jeweils gewünschten Betriebsmodus ausgebildet ist, und es ist Hard- und Software zum Generieren von Bildern der Probe aus den von der Detektionseinrichtung abgegebenen elektronischen Bildsignalen vorhanden.
Abstract:
Lichtrastermikroskope umfassen oft eine Abtastungsoptik (35) zum Erzeugen einer zur Pupillenebene des Mikroskopobjektivs konjugierten Pupillenebene (ΡΕ') und eine variabel einstellbare Strahlablenkeinheit (30) in der konjugierten Pupillenebene, wobei zwischen dem Mikroskopobjektiv und der Abtastungsoptik ein Zwischenbild (Zb1) liegt und die Lichtstrahlen in der konjugierten Pupillenebene kollimiert sind. Solche Abtastungsoptiken sind aufwendig und nicht lichteffizient, da sie unterschiedliche Abbildungsfehler wie Bildfeldwölbung und Farbquerfehler kompensieren müssen. Zudem ist aufgrund des geringen Abstands der konjugierten Pupillenebene von der Abtastungsoptik der für die Ablenkeinheit verfügbare Bauraum klein. Die Erfindung soll den Einsatz einer einfacheren Abtastungsoptik ermöglichen und mehr Bauraum verfügbar machen. Das gelingt dadurch, dass die Abtastungsoptik ein zweites Zwischenbild (Zb2) über die Strahlablenkeinheit in das erste Zwischenbild abbildet, wobei das zweite Zwischenbild räumlich gekrümmt ist. Die Ablenkeinheit ist nicht mehr in einem kollimierten, sondern in einem konvergenten Abschnitt des Strahlengangs angeordnet. Die Abtastungsoptik braucht dann in ihren optischen Eigenschaften und ihrer Güte eher lediglich einem Okular als einem herkömmlichen Abtastobjektiv zu entsprechen. Nichtlineare Mikroskopie.
Abstract:
A method is disclosed evaluating a silicon layer (22) crystallized by irradiation with pulses from an excimer-laser. The crystallization produces periodic features on the crystallized layer dependent on the number of and energy density ED in the pulses to which the layer has been exposed. An area of the layer is illuminated with light (29). A microscope image of the illuminated area is made from light diffracted from the illuminated area by the periodic features. The microscope image includes corresponding periodic features. The ED is determined from a measure of the contrast of the periodic features in the microscope image.
Abstract:
Motion strategies in two and three dimensions for scanning microscope imaging are described. An object, sample, or specimen is mounted on a precision three- dimensional stage. The object is moved concurrently with respect to a first axis and a second axis orthogonal to the first against a cutting tool to cut the object. An image of the cut portion is generated as the object is moved. The cutting tool may act as an optical waveguide for illuminating the portion of the object cut. An optical element captures images of the cut and illuminated object. The object may further be concurrently moved with respect to a third axis orthogonal to both the first and second.
Abstract:
A spectral microscopy device includes a spectral detecting unit including a light source that is capable of controlling an output wavelength, a microscope section that is provided with an observation area that is illuminated with light output from the light source, and a signal detector that detects light from the observation area as spectral data; a moving unit configured to move the observation area; and a controller that performs a control operation to allow the spectral detecting unit and the moving unit to move in response to each other. The spectral microscopy device is controlled so that switching between different measurement conditions is performed at an observation area movement time in which the observation area is moved by the moving unit and measurement is performed and at an observation area movement stoppage time in which the observation area is fixed and measurement is performed.