Abstract:
The invention relates to methods of cardiovascular imaging and/or measurement of blood markers for detecting, diagnosing and/or prognosing cardiac or myocardial microbleeds, especially in subject with hypertension and cardiovascular diseases. Treatment methods are also provided for subjects identified, diagnosed, prognosed, or detected with cardiac or myocardial microbleeds. In some embodiments, the subject has hypertension-induced microbleeds, but has not had a myocardial infarction or reperfusion therapy.
Abstract:
The invention provides methods for diagnosing coronary heart disease in a subject in need thereof comprising administering an admixture comprising CO2 to a subject to reach a predetermined PaCO2 in the subject to induce hyperemia, monitoring vascular reactivity in the subject and diagnosing the presence or absence of coronary heart disease in the subject, wherein decreased vascular reactivity in the subject compared to a control subject is indicative of coronary heart disease. The invention also provides methods for increasing sensitivity and specificity of BOLD MRI.
Abstract:
The invention provides methods for characterizing a myocardial infarction using magnetic resonance imaging, without the use of contrast agents, using, for example, a field strength of 3.0 Tesla or greater. Also provided is a method for detecting a chronic myocardial infarction in a subject suspected of having a myocardial infarction.
Abstract:
Provided herein are methods for reducing ischemia-reperfusion injury and/or microvascular obstructions by administering to the subject effective amounts of carbon dioxide and oxygen before, during and/or after re-establishing perfusion. In some embodiments, the methods further include using therapeutic hypothermia.
Abstract:
Methods of treating a subject with myocardial infarction are provided, which include selective targeting time-dependent iron products at different phases of the infarction. It is discovered that during acute phase of myocardial infarction, ferrous iron in the form of heme accumulate, often followed by infarct expansion, and during the chronic phase, ferric iron in the form of crystals are dominant. Chelator agents specific for ferrous iron, heme or ferric iron are demonstrated in the protection of cardiomyocytes, reduction of infarct expansion, or improving cardiac remodeling following myocardial infarction. Also provided are methods for determining the presence of intramyocardial hemorrhage by measuring plasma level of cardiac troponin before and after re-vascularization or a reperfusion therapy, which can be used to guide therapeutic treatment or intervention procedures to control the hemorrhage and mitigate infarct expansion.
Abstract:
The invention provides various methods for imaging a subject's cardiovascular system. The imaging method may be used to provide a diagnosis or prognosis of various cardiovascular diseases in the subject, without contrast agents or radioactive tracers, and further generating a Gaussian Mixture Model to obtain a reference value of a normal myocardium.
Abstract:
The invention provides methods for reducing microvascular obstructions, reducing hemorrhagic microvascular obstructions and/or reducing ischemia-reperfusion injury in a subject in need thereof by using therapeutic hypothermia and monitoring the outcome of the intervention with a non-invasive imaging standard.
Abstract:
Described herein are methods for cardiovascular imaging for diagnosing and/or detecting various cardiovascular diseases. Various embodiments of the invention provide using magnetic resonance imaging of the cardiovascular system of a subject at rest or a normocapnic condition, as well as at a stressed or hypercapnic condition, in a repeated manner enhancing the statistical power, such that fast, motion-corrected, free-breathing, whole-heart imaging of the cardiovascular system is utilized to identify impaired cardiovascular function in a manner with improved specificity and accuracy.
Abstract:
The invention provides various methods for imaging a subject's cardiovascular system. The imaging methods may be used to diagnose or prognose various cardiovascular diseases in the subject, without contrast agents or radioactive tracers.
Abstract:
The invention is directed to methods for diagnosing reperfusion/non-reperfusion hemorrhage and predicting cardiac arrhythmias and sudden cardiac death in subjects comprising using imaging techniques to detect regional iron oxide deposition. The invention also provides treatment methods for subject at increased risk of sudden cardiac death.