Abstract:
A crucible for silicon is disclosed, comprising a bottom and at least eight outer side wall sections, which confine a receiving space having an octagonal cross-section. Furthermore, a crucible arrangement for silicon is disclosed, which comprises the above described crucible and an inner side wall element centered with respect to the receiving space, such as to form an annular space, together with the outer side wall sections. Additionally, an optional partition unit for a crucible for silicon is also de- scribed, wherein the partition unit comprises at least one partition element fitted to the shape of the receiving space/annular space, in order to separate the receiving space/annular space into at least two compartments.
Abstract:
Die Anmeldung beschreibt eine Vorrichtung und ein Verfahren zum Herstellen eines polykristallinen Siliziumblocks, in einem in einer Prozesskammer angeordneten Schmelztiegel, der mit Siliziummaterial befüllt ist. Das Siliziummaterial wird im Schmelztiegel aufgeschmolzen um eine Siliziumschmelze zu bilden und wird anschließend unter die Erstarrungstemperatur des Siliziums abgekühlt. Während eines Abschnitts des Prozesses kann ein in der Prozesskammer befindliches, eine Durchgangsöffnung aufweisendes Plattenelement über der Siliziumschmelze angeordnet sein/werden und im Schmelztiegel unter die Erstarrungstemperatur der Siliziumschmelze; und eine Gasströmung wenigstens teilweise über die wenigstens eine Durchgangsöffnung in dem Plattenelement auf die Oberfläche der Siliziumschmelze gerichtet werden. Alternativ sind ein Verfahren und eine Schmelztiegelanordnung bestehend aus einem Schmelztiegel und einem Haltering beschrieben. Der Haltering kann auf oder oberhalb eines mit Siliziummaterial befüllten Schmelztiegel platziert werden, sodass zusätzliches Siliziummaterial derart in dem Haltering aufgenommen werden kann, dass das zusätzliche Siliziummaterial durch den Haltering oberhalb des Schmelztiegels gehalten wird. Beim Aufheizen des Siliziummaterials im Schmelztiegel und des zusätzlichen Siliziummaterials im Haltering wird eine Siliziumschmelze im Schmelztiegel gebildet die anschließend unter die Erstarrungstemperatur des Siliziums abgekühlt werden kann.
Abstract:
The present application describes a process and apparatus for producing polycrystalline silicon ingots. During the process, a crucible is arranged in a process chamber, wherein the crucible is filled with solid silicon material or is being filled with silicon material in the process chamber. The crucible is located with respect to at least one diagonal heater in such a way that the diagonal heater is located laterally offset to and generally above the silicon ingot to be produced. Thereafter, the solid silicon material in the crucible is heated above the melting temperature of the silicon material in order to form molten silicon in the crucible, and thereafter, the silicon material in the crucible is cooled down below the solidification temperature of the molten silicon, therein a temperature profile in the silicon material during the cooling phase is controlled at least partially via the at least one diagonal heater. The apparatus comprises a process chamber, a crucible holder inside the process chamber, and at least one diagonal heater in the process chamber. The diagonal heater is located laterally with respect to the crucible holder and extends generally perpendicular thereto and is spaced from the crucible holder in a vertical direction at such a distance that the diagonal heater is located generally above a polycrystalline silicon ingot to be formed in the crucible. The diagonal heater is stationary with respect to the crucible holder when the process chamber is closed.
Abstract:
An optical system for shaping an incoming beam having a divergence with an angular distribution at least in a first direction comprises at least one angle selective optical element (26,28) for clipping the angular distribution in the at least first direction. The approach according to the present invention bases on using an angle-selective device (25,32) operated by the principle of total internal reflection to reduce divergence of the incoming beam, in contrast to a spatially-selective device as for example a field-stop or slit. The method according to the present invention has the advantage that no physical sharp edges have to be exposed at high energy densities. Thus, thermal impact and demands on the optical elements to withstand a high power laser beam are significantly reduced.