Abstract:
An induction furnace for heating a workpiece includes a chamber and an insulation cylinder positioned therein, with the insulation cylinder including a base cover movable between first and second positions, and the first position positioning the workpiece within a heating zone and the second position positioning the workpiece within a cooling zone. A translation system in the furnace includes a first member coupled to the base cover of the insulation cylinder and extending through a wall of the chamber, an actuator coupled to the first member, the actuator configured to translate the first member to move the base cover of the insulation cylinder between the first and second positions, and an expansion member encircling a portion of the first member and configured to hermetically seal an interior volume of the chamber from an environment volume external to the chamber.
Abstract:
A method of fabricating a reaction container according to the disclosure comprises putting graphite power in a molded member; and pressing the molded member, wherein the graphite powder comprises first graphite powder and second graphite powder having different particle sizes. A vacuum heat treatment apparatus comprises a chamber, a reaction container in the chamber, and a heat member heating the reaction container in the chamber, in which the reaction container comprises graphite, and the reaction container has a concentration in the range of 1.8 to 2.0.
Abstract:
A heat treatment container for a vacuum heat treatment apparatus according to an exemplary embodiment includes a bottom portion and a sidewall, and a support protruding inward.
Abstract:
The present application describes a process and apparatus for producing polycrystalline silicon ingots. During the process, a crucible is arranged in a process chamber, wherein the crucible is filled with solid silicon material or is being filled with silicon material in the process chamber. The crucible is located with respect to at least one diagonal heater in such a way that the diagonal heater is located laterally offset to and generally above the silicon ingot to be produced. Thereafter, the solid silicon material in the crucible is heated above the melting temperature of the silicon material in order to form molten silicon in the crucible, and thereafter, the silicon material in the crucible is cooled down below the solidification temperature of the molten silicon, therein a temperature profile in the silicon material during the cooling phase is controlled at least partially via the at least one diagonal heater. The apparatus comprises a process chamber, a crucible holder inside the process chamber, and at least one diagonal heater in the process chamber. The diagonal heater is located laterally with respect to the crucible holder and extends generally perpendicular thereto and is spaced from the crucible holder in a vertical direction at such a distance that the diagonal heater is located generally above a polycrystalline silicon ingot to be formed in the crucible. The diagonal heater is stationary with respect to the crucible holder when the process chamber is closed.
Abstract:
Изобретение относится к получению тугоплавких, металлических и неметаллических материалов и возгонов. Устройство содержит реактор-сепаратор, боковые питатели с каналами, гранулятор и теплообменные устройства первой, второй и третьей стадии. Реактор-сепаратор выполнен в виде цилиндрической камеры со стержневым полым электродом с теплообменными элементами, каналом для эвакуации отходящих газов и возгонов и электромагнитной катушкой. Теплообменное устройство первой стадии выполнено в виде барабанного смесителя для одновременной сушки и нагрева сырьевой шихты до температуры выше 100°С горячим клинкером, поступающим с гранулятора. Теплообменное устройство второй стадии имеет полый корпус, охватывающий цилиндрическую камеру реактора. Теплообменное устройство третьей стадии выполнено в виде плазмотрона-термодекарбонизатора. Технический результат заключается в исключении потерь тепла в окружающую среду, максимальном использовании энергии экзотермических реакций, минимальном потреблении энергоресурсов, необходимых для клинкерообразования, значительном повышении производительности реактора и качества цементных клинкеров.
Abstract:
A system for delivering a fluid into a container includes a housing configured to be secured to the container. The housing includes a reservoir to receive and retain a fluid as a liquid, and the housing further includes an opening that provides fluid communication between the reservoir and an interior within the container so as to facilitate a flow of inert gas which is formed from vaporization of the liquid within the reservoir into the container interior.
Abstract:
A method and apparatus for optimizing melting of titanium for processing into ingots or end products. The apparatus provides a main hearth (56), a plurality of optional refining hearths, and a plurality of casting molds (58a, 58b) or direct molds whereby direct arc electrodes (84) melt the titanium in the main hearth (56) while plasma torches (84) melt the titanium in the refining chambers and/or adjacent the molds (58a, 58b). Each of the direct arc electrodes (84) and plasma torches (84) is extendable and retractable into the melting environment and moveable in a circular pivoting or side to side linear motion.