Abstract:
Disclosed herein is a method for increasing the maximum operating speed of an internal combustion engine operated in a low temperature combustion ignition mode, the method comprising operating the engine with a fuel composition comprising (a) gasoline having a Research Octane Number (RON) greater than 85 and (b) one or more cetane improvers.
Abstract:
Disclosed herein is a method for increasing the high load (knock) limit of an internal combustion engine operated in a low temperature combustion ignition mode, the method comprising operating the engine with a fuel composition comprising (a) gasoline having a Research Octane Number (RON) greater than 85 and (b) one or more cetane improvers.
Abstract:
The present invention is directed to preparing distillate fuel having almost no oxygen and no carbon-to-carbon double bonds. The method comprises passing biodiesel and/or lipids derived from vegetable oils, algae oils, and/or animal fats over bio-feedstock, or lipids, conversion catalyst that performs the hydrocarbon isomerization function, removes oxygen from the feedstock, cracks off the C3 backbone, and saturates double bonds. The process is a single step process eliminating the need of a separate costly hydrotreating step while producing a renewable source distillate fuel.
Abstract:
A hydroconversion process comprises contacting a feedstock comprising renewable materials under hydroprocessing conditions with a promoted catalyst selected from a self-supported catalyst, a supported catalyst and combinations thereof, wherein the reaction conditions can be tailored to directly convert the renewable feedstock to the desired product(s) including fatty alcohols, esters, normal paraffins, or combinations thereof. The catalyst comprising at least a Group VIB metal selected from molybdenum and tungsten, a Group VIII metal selected from cobalt and nickel to convert the feedstock into any of fatty alcohols, esters, and normal paraffins. In some embodiments, the process further comprising additional steps to generate various desirable products, including α-olefins (or PAO, by dehydrating the fatty alcohol products), lubricants and bright stocks (from the oligomerizing of the PAO), and Group 3 lubricants (from co-oligomerizing of the PAO with some short chain olefins).