Abstract:
A method and apparatus are provided for aligning optical elements or microbeads, wherein each microbead has an elongated body with a code embedded therein along a longitudinal axis thereof to be read by a code reading device. The microbeads are aligned with a positioning device so the longitudinal axis of the microbeads is positioned in a fixed orientation relative to the code reading device. The microbeads are typically cylindrically shaped glass beads between 25 and 250 microns (µm) in diameter and between 100 and 500 µm long, and have a holographic code embedded in the central region of the bead, which is used to identify it from the rest of the beads in a batch of beads with many different chemical probes. A cross reference is used to determine which probe is attached to which bead, thus allowing the researcher to correlate the chemical content on each bead with the measured fluorescence signal. Because the code consists of a diffraction grating typically disposed along an axis, there is a particular alignment required between the incident readout laser beam and the readout detector in two of the three rotational axes. The third axis, rotation about the center axis of the cylinder, is azimuthally symmetric and therefore does not require alignment.
Abstract:
An assay stick (7) includes a transparent reaction vessel or tube (14) having one or more microbeads (8) disposed therein. The microbeads (8) have a plurality of unique identification digital codes based on a diffraction grating (12) disposed therein that are detected when illuminated by incident light (24). The incident light (24) may be directed transversely onto the side or onto an end of the tube (14) with a narrow band (single wavelength) or multiple wavelength source, in which case the code is represented by a spatial distribution of light or a wavelength spectrum, respectively. The assay stick (7) may be reused or disposed upon completion of the assay. Alternatively, the beads may be attached to a strip or planar surface. The encoded beads can also provide traceability, quality-control, and authenticity of each bead (8) to its source and/or to the chemistry on each bead (8). Also, the low sample volume of the assay stick allows for faster reactions and better sensitivity.
Abstract:
A method for manufacturing a diffusion grating-based optical identification element is provided. The optical identification element includes a known optical substrate, having an optical diffraction grating disposed in the volume of the substrate. A large number of substrates or microbeads having unique identification codes can be manufactured winding a substrate, such as a fiber, around a polygonal shaped cage/basket to form a fiber ribbon having flatsections. A grating writing station writes one or more gratings into each flat section to form a unique code to this section. Each flat section of fibers of the fiber ribbon is written with the saure gratings to provide the same identification code, or alternatively each flat section may be have a different grating(s) written therein so that each section has a different identification code. The fiber ribbon is then removed from the cage and diced to form a groups of optical identification elements, each group having unique optical identification codes.
Abstract:
A method and apparatus are provided for aligning optical elements or microbeads (8), wherein each microbead has an elongated body with a code embedded therein along a longitudinal axis thereof to be read by a code reading device. The microbeads (8) are aligned with a positioning device (or cell) (500) having a plate or platform (200, 1252) with grooves (205, 1258) so the longitudinal axis of the microbeads is positioned in a fixed orientation relative to the code reading device. The microbeads (8) are typically cylindrically shaped glass beads having a diffraction grating-based code embedded in the bead (8) disposed along an axis, which requires a predetermined alignment between the incident code readout laser beam and the code readout detector in two of three rotational axes. The geometry of the grooves (205) are designed to allow for easy loading and unloading of beads from a cell, and the grooves (205) may be straight or curved. Also, the cell may be segmented into regions each associated with a different reaction or used for a different identification process/ application, and may have many different geometries depending on the application.
Abstract:
A method and apparatus are provided for aligning optical elements or microbeads, wherein each microbead has an elongated body with a code embedded therein along a longitudinal axis thereof to be read by a code reading device. The microbeads are aligned with a positioning device so the longitudinal axis of the microbeads is positioned in a fixed orientation relative to the code reading device. The microbeads are typically cylindrically shaped glass beads between 25 and 250 microns (µm) in diameter and between 100 and 500 µm long, and have a holographic code embedded in the central region of the bead, which is used to identify it from the rest of the beads in a batch of beads with many different chemical probes. A cross reference is used to determine which probe is attached to which bead, thus allowing the researcher to correlate the chemical content on each bead with the measured fluorescence signal. Because the code consists of a diffraction grating typically disposed along an axis, there is a particular alignment required between the incident readout laser beam and the readout detector in two of the three rotational axes. The third axis, rotation about the center axis of the cylinder, is azimuthally symmetric and therefore does not require alignment.
Abstract:
A methods and apparatus for labeling an item using diffraction grating-based encoded optical identification elements (8) includes an optical substrate (10) having at least one diffraction grating (12) disposed therein. The grating (12) has one or more colocated pitches A which represent a unique identification digital code that is detected when illuminated by incident light (24). The incident light (24) may be directed transversely from the side of the substrate (10) (or from an end) with a narrow band (single wavelength) or multiple wavelength source, and the code is represented by a spatial distribution of light or a wavelength spectrum, respectively, or a combination thereof. The element (8) can provide a large number of unique codes, e.g., greater than 67 million codes, and can withstand harsh environments. The encoded element (8) may be used to label any desired item, such as large or small objects, products, solids, powders, liquids, gases, plants, minerals, cells and/or animals, or any combination of or portion of one or more thereof. The label may be used for many different purposes, such as for sorting, tracking, identification, verification, authentication, anti-theft/anti-counterfeit, security/anti-terrorism, or for other purposes. In a manufacturing environment, the elements (8) may be used to track inventory for production information or sales of goods/products.
Abstract:
An assay stick 7 includes a transparent reaction vessel or tube 14 having one or more microbeads 8 disposed therein. The microbeads 8 have a plurality of unique identification digital codes based on a diffraction grating 12 disposed therein that are detected when illuminated by incident light 24. The incident light 24 may be directed transversely onto the side or onto an end of the tube 14 with a narrow band (single wavelength) or multiple wavelength source, in which case the code is represented by a spatial distribution of light or a wavelength spectrum, respectively. The assay stick 7 may be reused or disposed upon completion of the assay. Instead of beads, cells or molecules may be spotted or grown directly on the tube.