Abstract:
Apparatus is disclosed for measuring the circumference of a limb of an individual, e.g., the individual's arm and/or calf. The apparatus uses one or more magnetic strips which surround the limb and contain magnetic coding of length information. Tension is applied to the magnetic strip by a tensioning assembly, which can be a pressure cuff or a stepping motor, and a magnetic read head reads the magnetic coding of length information from the strip. When used in a bioimpedance analysis procedure, the length information can be used to convert measured voltage differences into normalized bioimpedance values, e.g., resistivity values.
Abstract:
Methods and apparatus for predicting/estimating the dry weight of an individual, e.g., a patient undergoing dialysis treatment, are provided. The techniques employ a bioimpedance measurement (303) on the individual's calf (101) to obtain information regarding the extracellular fluid volume of the calf. Using a measurement of the calf's circumference (309), a resistivity value is calculated, normalized by the individual's body mass index (BMI), and then offset by a reference value to obtain a new variable, ΔnRho, which is shown, by comparison with a "gold standard" (FIGS. 5-9), to be highly effective in predicting/estimating dry weight (FIGS. 10-13 and 15-16). The techniques are easy to use and provide accurate dry weight predictions/estimations without substantially adding to the complexity or cost of dialysis procedures. The techniques can also be used for individuals who are not renal patients, e.g., patients suffering from other diseases in which fluid overload can occur, athletes, fitness enthusiasts, and the like.
Abstract:
Systems and methods are provided for assessing patient blood flow using video image processing. According to one aspect, a method of analyzing at least one blood flow characteristic of a patient includes capturing a video including a plurality of frames of an arterio-venous (AV) fistula on the patient; amplifying motion in the video to produce a motion- amplified video; determining a difference in intensity between consecutive frames in the motion-amplified video to produce a time-function of an amplitude of the optic flow representing movement in an area of interest on the patient; and determining the at least one blood flow characteristic of the patient based on the time-function.
Abstract:
In an embodiment, the invention relates to methods, apparatus, computer programs and computer program products for estimating a dry weight of a dialysis patient comprising the steps of determining a first fluid status of the patient between treatment sessions in a first stage, determining a second fluid status of the patient during treatment sessions in a second stage and estimating the dry weight based on the second fluid status.
Abstract:
A dialysis access site monitoring system may generate a treatment recommendation for treating a condition of an access site based on a video of the access site. The dialysis access site monitoring system may operate to generate video information based on a video of a dialysis access site of a patient, determine change in the number of pixels (CNP) information of the video information, the CNP information associated with movement of a skin surface of the patient due to blood flow through the dialysis access site, determine frequency domain information of the CNP information, determine a maximum-to-median power (M2) value of the frequency domain information, and determine at least one access site characteristic based on the M2 value. The at least one access site characteristic may include access blood flow (ABF) and/or a prediction or estimation of stenosis. Other embodiments are described.
Abstract:
A dialysis access site monitoring system may generate a treatment recommendation for treating a condition of an access site based on a video of the access site. The dialysis access site monitoring system may include an apparatus having a processor and a memory coupled to the processor. The memory may include instructions that, when executed by the processor, may cause the processor to generate video information based on a video of a dialysis access site of a patient, determine change in the number of pixels (CNP) information of the video information, the CNP information associated with movement of a skin surface of the patient due to blood flow through the dialysis access site, determine frequency domain information of the CNP information, determine a maximum-to-median power (M2) value of the frequency domain information, and determine at least one access site characteristic based on the M2 value.
Abstract:
A technique for determining skin sodium content using bioimpedance spectroscopy includes applying a current at a predetermined frequency to skin of a subject, measuring a voltage across the skin of the subject produced by the current, determining a resistance across the skin of the subject at the predetermined frequency using the measured voltage, and determining skin sodium content using the measured voltage.
Abstract:
Techniques for monitoring fluid volumes during peritoneal analysis include: computing lower abdominal fluid volumes, continuously during a dwell time of a peritoneal dialysis treatment, based at least on bioimpedance data from electrodes positioned on a patient's upper thighs; and computing intraperitoneal volumes, continuously during the dwell time of the peritoneal dialysis treatment, based at least on bioimpedance data from the electrodes positioned on the patient's upper thighs and electrodes positioned on the patient's torso.
Abstract:
Techniques and apparatuses for determining fluid volumes of a patient are described. In one embodiment, for example, an apparatus may include at least one memory, and logic coupled to the at least one memory. The logic may be configured to receive baseline bioimpedance information for at least a portion of a human body at a baseline pressure, receive pressurized bioimpedance information of the portion of the human body at a pressurized pressure, the pressurized pressure greater than the baseline pressure and configured to substantially remove blood volume from the portion at the pressurized pressure, and determine at least one of interstitial fluid volume (V IT ) or peripheral blood volume (BV P ) based on the baseline bioimpedance information and the pressurized bioimpedance information. Other embodiments are described.
Abstract:
A method of detecting an indication of a potential intradialytic morbid event (IME) by monitoring a patient's condition during excess fluid removal by ultrafiltration during a hemodialysis treatment includes determining the patient's relative blood volume (RBV), and removing a portion of the volume of excess fluid from blood of the patient at an initial ultrafiltration rate while periodically monitoring a second derivative over time of the relative blood volume (SDRBV). The method then includes continuing to remove excess fluid from blood of the patient at the same ultrafiltration rate, or, optionally, incrementally increasing the ultrafiltration rate. The method further includes triggering an alarm for an IME for the patient if the SDRBV is in a range of between a low SDRBV alarm level and a high SDRBV alarm level, and, alternatively or additionally monitoring the patient's normalized blood pressure ratio, and taking a remedial action if the alarm is triggered.