Abstract:
A configurable diesel powered system is provided for controlling engine emissions of a diesel-fueled power generating unit. The diesel-fueled power generating unit includes an engine operating on at least one fuel type. The system includes a plurality of operational input devices coupled with a processor to generate operational input signals to the processor. A plurality of end use devices include fuel tanks for each respective fuel type and are controlled by the processor to control the engine emissions. A configuration input device in communication with the processor generates a respective configuration signal for each particular location along the predetermined course comprising a mission. The processor is responsive to the operational input devices and configuration signals to generate a set of control signals to the fuel tanks to limit the total engine emissions of all fuel types to a respective stored engine emission profile for each configuration signal for each particular location along the predetermined course comprising the mission.
Abstract:
One embodiment of the invention includes a system for operating a railway network comprising a first railway vehicle (400) during a trip along track segments(401/412/420). The system comprises a first element (65) for determining travel parameters of the first railway vehicle (400), a second element (65) for determining travel parameters of a second railway vehicle (418) relative to the track segments to be traversed by the first vehicle during the trip, a processor (62) for receiving information from the first (65) and the second (65) elements and for determining a relationship between occupation of a track segment (401/412/420) by the second vehicle (418) and later occupation of the same track segment by the first vehicle (400) and an algorithm embodied within the processor (62) having access to the information to create a trip plan that determines a speed trajectory for the first vehicle (400), wherein the speed trajectory is responsive to the relationship and further in accordance with one or more operational criteria for the first vehicle (400).
Abstract:
A control system includes a controller and an energy management system. The controller is onboard a vehicle that includes motors and an onboard energy storage device that powers the motors. The energy management system calculates estimated electric loads of powering the motors over one or more segments of a trip according to designated operational settings of a trip plan. The energy management system also determines a demanded amount of electric energy for powering the vehicle based on the estimated electric loads. The demanded amount of electric energy is based on a stored amount of electric energy in the onboard storage device. The energy management system communicates the demanded amount of electric energy to one or more of plural wayside stations disposed along the route so that the wayside stations have sufficient electric energy to charge the onboard energy storage device with the electric energy to meet the estimated electric loads.
Abstract:
A control system for operating a diesel powered system having at least one diesel-fueled power generating unit, the system including a mission optimizer that determines at least one setting be used by the diesel-fueled power generating unit, a converter that receives at least one of information that is to be used by the diesel-fueled power generating unit and converts the information to an acceptable signal a sensor to collect at least one operational data from the diesel powered system that is communicated to the mission optimizer, and a communication system that provides for a closed control loop between the mission optimizer, converter, and sensor.
Abstract:
A system for controlling a tail road train over a segment of track The system comprises a first clement for determining a location of the train on the segment of track, a second element for providing track characterization information for the segment of track, the track characterization information related to physical conditions of the segment of track, and a processor for controlling applied tractive forces and braking forces of the train responsive to the location of the train and the track characterization information to reduce at least one of wheel wear and/or track wear during operation of the train over the segment of track.
Abstract:
A method and a system for controlling operation of a propulsion system of a waterborne vessel, comprising adjusting recovery of energy generated from the propulsion system to maintain position of the waterborne vessel in response to at least an indication of vessel position. The concepts herein can be applied to a first vessel being moved/positioned by a second vessel such as a tug boat.
Abstract:
One embodiment of the invention comprises a system for operating a railway vehicle (8) comprising a lead powered unit (14/15) and a non-lead powered unit (16/17/18) during a trip along a track The system comprises a first element (65) for determining a location of the vehicle or a time from the beginning of a current trip, a processor (62) operable to receive information from the first element (65) and an algorithm embodied within the processor (62) having access to the information to create a trip plan that optimizes performance of one or both of the lead unit (14/15) and the non-lead unit (16/17/18) in accordance with one or more operational criteria for one or more of the vehicle (8), the lead unit (14/15) and the non-lead unit (16/17/18).
Abstract:
Method, system, and computer program product are provided for reporting and processing information relating to railroad assets to user entities that form part of a railroad transportation network. The entities may comprise a plurality of entity groups performing distinct functions relative to the railroad assets, such as forming, operating, maintaining and/or servicing the assets of the railroad transportation network.
Abstract:
A system is provided for use with, a wheeled vehicle. The system includes a media reservoir capable of holding a tractive material that includes particulates; a nozzle in fluid communication with the media reservoir; and a media valve in fluid communication with the media reservoir and the nozzle. The media valve is controllable between a first state in which the tractive material flows through the media valve and to the nozzle, and a second state in which the tractive material is prevented from flowing to the nozzle. In the first state, the nozzle receives the tractive material from the media reservoir and directs the tractive material to a contact surface such that the tractive material impacts the contact surface that is spaced from a wheel/surface interface. The system can modify the adhesion or the traction capability of the contact surface with regard to a subsequently contacting wheel.
Abstract:
A drive system for a grid blower of a vehicle is provided. The system includes: an electrical bus, a grid of resistive elements connected to the electrical bus, the grid of resistive elements configured to thermally dissipate electrical power generated from braking of the vehicle, the electrical power being transmitted on the electrical bus to the grid of resistive elements, an electrical power modulation device configured to modify electrical power received from at least one of the electrical bus and the grid of resistive elements, and a grid blower motor coupled to an output of the electrical power modulation device, wherein a speed of the grid blower motor varies based on the electrical power that has been modified by the electrical power modulation device.