Abstract:
An optical article comprising a plurality of optically detectable marks disposed on a surface of the optical article; a removable electrical device disposed on the surface of the optical article; wherein the electrical device is operatively coupled to the optical article; and wherein the electrical device is configured to interact with an activation signal when brought in direct contact with a communication device that applies the activation signal to the electrical device. A removable electrical device is also provided. A system and a method for activation are also provided.
Abstract:
The present approach relates to the fabrication and use of a probe array having multiple individual probes. In one embodiment, the probes of the probe array may be functionalized such that certain of the probes are suitable for electrical sensing (e.g., recording) or stimulation, non-electrical sensing or stimulation (e.g., chemical sensing and/or release of biomolecules when activated), or a combination of electrical and non-electrical sensing or stimulation.
Abstract:
An electronics package includes an insulating substrate, an electrical component having a back surface coupled to a first surface of the insulating substrate, and an insulating structure surrounding at least a portion of a perimeter of the electrical component. A first wiring layer extends from the first surface of the insulating substrate and over a sloped side surface of the insulating structure to electrically couple with at least one contact pad on an active surface of the electrical component. A second wiring layer is formed on a second surface of the insulating substrate and extends through at least one via therein to electrically couple with the first wiring layer.
Abstract:
The present approach relates to the fabrication and use of a probe array having multiple individual probes. In one embodiment, the probes of the probe array may be functionalized such that certain of the probes are suitable for electrical sensing (e.g., recording) or stimulation, non-electrical sensing or stimulation (e.g., chemical sensing and/or release of biomolecules when activated), or a combination of electrical and non-electrical sensing or stimulation.
Abstract:
A flexible wire assembly includes a plurality of elongated conductors and insulators each having a quadrilateral cross section and alternatingly laminated together, the flexible wire assembly having a wire width measured across the conductor and insulators, a wire height equivalent to the height of the conductors and insulators, and a wire length which is measured in a longitudinal direction orthogonal to the wire width and the wire height, wherein the wire length is one or more orders of magnitude greater than the wire width and the wire height; and a first device comprising a plurality of bond pads spaced to define a bond pad pitch, wherein the flexible wire assembly is coupled to the first device at the bond pads such that spacing of the conductor conductors is matched to the bond pad pitch.
Abstract:
An electronics package includes an interconnect assembly comprising a first insulating substrate, a first wiring layer formed on a lower surface of the first insulating substrate, and at least one through hole extending through the first insulating substrate and the first wiring layer. The electronics package also includes an electrical component assembly comprising an electrical component having an active surface coupled to an upper surface of the first insulating substrate opposite the lower surface. The active surface of the electrical comprises at least one metallic contact pad. At least one conductive stud is coupled to the at least one metallic contact pad and is positioned within the at least one through hole. A conductive plug contacts the first wiring layer and extends into the at least one through hole to at least partially surround the at least one conductive stud.
Abstract:
An electronics package includes a support substrate, an electrical component having an active surface coupled to a first surface of the support substrate, and an insulating structure coupled to the first surface of the support substrate and at least one sidewall of the electrical component. A functional layer comprising at least one functional component is formed on at least one of a sloped sidewall of the insulating structure and a backside surface of the electrical component. A first wiring layer is formed on a second surface of the support substrate. The first wiring layer is electrically coupled to the functional layer through at least one via in the support substrate.
Abstract:
A sensor assembly is provided for use in tracking a medical device. The sensor assembly comprises a magnetoresistance sensor capable of providing position and orientation information. In certain implementations, the magnetoresistance position and orientation sensor is originally configured for connection to a substrate using one type of interconnect approach but is modified to be connected using a different interconnect approach.
Abstract:
A method of manufacturing a multi-layer electronics package includes attaching a base insulating substrate to a frame having an opening therein and such that the frame is positioned above and/or below the base insulating substrate to provide support thereto. A first conductive wiring layer is applied on the first side of the base insulating substrate, and vias are formed in the base insulating substrate. A second conductive wiring layer is formed on the second side of the base insulating substrate that covers the vias and the exposed portions of the first conductive wiring layer and at least one additional insulating substrate is bonded to the base insulating substrate. Vias are formed in each additional insulating substrate and an additional conductive wiring layer is formed on each of the additional insulating substrate. The described build-up forms a multilayer interconnect structure, with the frame providing support for this build-up.
Abstract:
An electronics package includes a support substrate, an electrical component having a first surface coupled to a first surface of the support substrate, and an insulating structure coupled to the first surface of the support substrate and sidewalls of the electrical component. The insulating structure has a sloped outer surface. A conductive layer encapsulates the electrical component and the sloped outer surface of the insulating structure. A first wiring layer is formed on a second surface of the support substrate. The first wiring layer is coupled to the conductive layer through at least one via in the support substrate.