Abstract:
A signal processing device includes a single moment prediction and correction engine configured to receive a signal including a target signal, and to execute a single-moment filter, based on a current measurement sample of the signal and a model of the target signal, to obtain a single-moment state estimate and a single-moment state estimate error covariance for the target signal, a covariance renormalizer configured to determine a multi-moment state estimate error covariance for the target signal based on a prior single-moment state estimate error covariance, corresponding to a sample prior to the current measurement sample, and the single-moment state estimate error covariance, and a multi-moment prediction and correction engine configured to execute a multi-moment filtering extension based on the current measurement sample and the multi-moment state estimate error covariance to obtain a multi-moment state estimate, and further configured to determine an estimate for the target signal based on the multi-moment state estimate.
Abstract:
In one embodiment, reducing electromagnetic radiation from sources within a substrate, such as a substrate for supporting an integrated circuit die, where the substrate comprises power layers, ground layers, and ground rings surrounding all or a portion of the power layers, where the ground layers and the ground rings are extended at least to the edges of the substrate so that conductive plates may be in electrical contact with the ground layers and the ground rings so as to define an enclosure to substantially contain electromagnetic radiation from sources within the defined enclosure.
Abstract:
In a recognition method, movement characteristics of an object are determined based on sensor information; image information of the object is determined based on the sensor information; and one or more gesture recognition operations are performed based on the movement characteristics and the image information to generate gesture recognition information. The recognition method may further include determining one or more physical characteristics of the object based on the image information; performing one or more physical characteristic pattern recognition operations based on the one or more physical characteristics to generate pattern recognition information; and generating a recognition output signal based on the gesture recognition information and the pattern recognition information.
Abstract:
An apparatus, system, and method, the method including receiving clock frequency parameter information for at least one clock source; receiving radio parameter information for at least one radio receiver; determining one or more spread spectrum clocking (SSC) profiles for the at least one clock source and the at least one radio receiver, each SSC profile to reduce radio frequency interference between the clock and radio receivers; and storing the SSC profiles.
Abstract:
In some embodiments, the invention includes a system having a clock recovery circuitry to receive a data signal and a reference clock signal and in response thereto to produce an in phase clock signal which is in phase with the data signal and mirrors frequency changes in the data signal, wherein the data signal has embedded clock information and a varying frequency. The system also includes a receiving gate to receive the data signal and the in phase clock signal and to gate the data signal to produce a gated data signal in response to the in phase clock signal. Other embodiments are described and claimed.
Abstract:
In various aspects, a radio frequency circuit is provided. The radio frequency circuit may include a substrate that may include a radio frequency front-end to antenna (RF FE-to-Ant) connector. The RF FE-to-Ant connector may include a conductor track structure and a substrate connection structure coupled to the conductor track structure. The substrate may include radio frequency front-end circuitry monolithically integrated in the substrate. The substrate connection structure may include at least one of a solderable structure, a weldable structure, or an adherable structure. The substrate connection structure may be configured to form at least one radio frequency signal interface with an antenna circuit connection structure of a substrate-external antenna circuit. The substrate may include an edge region. The substrate connection structure may be disposed in the edge region.
Abstract:
Various antennas elements including antennas arrays can support various communication technologies and can be integrated into different components or subcomponents of a vehicle, including various vehicle light assemblies. The vehicular antennas elements include low profile and/or concealed antenna elements that are inconspicuous aesthetically and do not affect or substantially affect vehicle aerodynamics.
Abstract:
In some embodiments an adaptive clocking controller determines a clock spread of a system clock that would result in a lowest total interference between a channel received by a radio receiver and the system clock. A clock generator modifies a spread of the system clock in response to the determined clock spread. Other embodiments are described and claimed.
Abstract:
A communication device for a vehicular radio communications includes one or more processors configured to identify a plurality of vehicular communication devices that form a cluster of cooperating vehicular communication devices, determine channel resource allocations for the plurality of vehicular communication devices that includes channel resources allocated for a first vehicular radio communication technology and channel resources allocated for a second vehicular radio communication technology, and transmit the channel resource allocation to the plurality of vehicular communication devices.
Abstract:
Certain embodiments herein relate to selective utilization of shared access points to facilitate optimized wireless communications. A wireless access point located at a home, residence, or other facility may be shared among other such access points to form a wireless network of shared access points across various regions or areas. One or more access points that provide an optimized wireless connection for user devices within range of the access points may be determined in certain embodiments herein. The determination may include comparing operational or performance information associated with the access points, such as link quality, quality of service, current load, backhaul connectivity information, etc., as well as pricing associated with the access points, to determine which one or more access points facilitate or provide optimized wireless communications between devices on a wireless network.