Abstract:
Disclosed herein are methods and systems for the preparation of a co-injection molded multilayer plastic article. Some methods include co-extruding a combined polymeric stream having an interior core stream encased by an inner stream and an outer stream. A volumetric ratio of the inner stream to outer stream is adjusted during injection of the combined stream into the a mold cavity to alter a streamline along which the interior core stream flows thereby forming cohesion member that structurally interlocks the interior layer with the inner layer, with the outer layer or with both. Some embodiments reduce or eliminate a need for addition of an adhesive in the composite stream to prevent delamination of layers of the resulting multilayer plastic article. In some embodiments, cohesion members may be employed to produce a desired cosmetic effect in a resulting article.
Abstract:
The present disclosure is directed to methods and devices that use a contact interface for establishing an electrical connection with an electrical component. In certain exemplary embodiments, the contact interface of a device includes at least one loading fiber and at least one conductor having at least one contact point. The conductor(s) is coupled to a loading fiber so that an electrical connection can be established between the contact point(s) of the conductor(s) and the electrical component when the device is engaged with the electrical component. In certain exemplary embodiments, a conductor is woven with, or wound around, a loading fiber. In some exemplar embodiments, the conductor is comprised of a shaped contact and a conductive lead. The present disclosure is also directed to methods and devices for testing the electrical integrity or functionality of an electrical component. In certain exemplary embodiments, the device includes a plurality of loading fibers, a plurality of conductors and a plurality of tensioning guides. Each conductor can be coupled to at least one loading fiber. The tensioning guides can be disposed on at least one side of each said conductor. In such embodiments, the electrical connections can be established between at least a portion of the plurality of conductors and the electrical component when the device is engaged with the electrical component. At least a portion of the plurality of loading fibers may come into contact with the plurality of tensioning guides when the device is engaged with the electrical component. In one exemplary embodiment, the device comprises a burn-in socket device. In another exemplary embodiment, the device comprises a test socket device.
Abstract:
The present disclosure is directed to multiple-contact woven power connectors that have at least a first set of loading fibers and at least a first set of conductors. When woven onto a set of loading fibers, the conductors define a space. The loading fibers are capable of delivering contact forces at the contact points of the conductors. The conductors can comprise a power circuit or a return circuit. The power connectors may also include tensioning springs that are capable of generating tensile loads within the loading fibers. The power connectors may further include mating conductors that can be coupled to the power/return circuits. When disposed within the first and second spaces, respectively, electrical connections between the conductors and the mating conductors can be established.
Abstract:
An aerial vehicle includes a hybrid power generation system comprising an engine; a generator mechanically coupled to the engine; and a propulsion system comprising an electric motor electrically coupled to the generator and a rotational mechanism coupled to the electric motor.
Abstract:
An electrical connector that has an array of conductors each having a contact point to make contact with a mating conductive surface. Upon engaging the contact points in a sliding manner with the mating surface, the conductors are displaced, which, in turn, tensions a loading fiber within the connector. Tensioning of the loading fiber provides a contact force between the contact points and the mating surface.
Abstract:
A bearing (24, 86) adapted to support and allow controlled relative movement with an opposed bearing surface. The bearing is constructed to have a long life by incorporating a locally compliant surface that addresses many causes of friction and wear. The bearing (24, 86) includes a plurality of support members (28) extending from a base. Together, the plurality of support members (28) can support a load applied perpendicular to the base through an opposed bearing. Additionally, the plurality of support members (28) allow sliding contact between the opposed bearings. The support members (28) can move independently to accommodate irregularities located between the support member and the opposed bearing, such that plowing is reduced and wear to the bearings is minimized. Also, the support members (28) maintain the distance between the opposed bearing when any foreign particle or asperity causes one or more of the support members to flex independently on a localized basis.
Abstract:
An unmanned aerial vehicle includes at least one rotor motor configured to drive at least one propeller to rotate; and a micro hybrid generator system configured to provide power to the at least one rotor motor. The micro hybrid generator system includes a rechargeable battery configured to provide power to the at least one rotor motor; a small engine configured to generate mechanical power; and a generator motor coupled to the small engine and configured to generate electrical power from the mechanical power generated by the small engine. The unmanned aerial vehicle also includes a cooling system configured to couple to the micro hybrid generator system. The cooling system includes one or more plates; and a plurality of fins extending from each of the one or more plates. The cooling system is configured to dissipate heat from the micro hybrid generator system.
Abstract:
A bearing (24, 86) adapted to support and allow controlled relative movement with an opposed bearing surface. The bearing is constructed to have a long life by incorporating a surface that addresses many causes of friction and wear. The bearing (24, 86) includes a plurality of support members (28) extending from a base. Together, the plurality of support members (28) can support a load applied to the base through an opposed bearing surface. Additionally, the plurality of support members (28) allow sliding modes of motion between the opposed bearings. These support members (28) can move independently to accommodate irregularities located between the support member (28) and the opposed bearing, such that plowing is reduced and wear to the bearings is minimized. The support members (28) may also be configured to allow certain non-sliding modes of motion between opposed bearing surfaces while resisting other non-sliding modes of motion.
Abstract:
This method enables the use of nanowire or nano-textured forms of Polyaniline and other conductive polymers in energy storage components. The delicate nature of these very high surface area materials are preserved during the continuous electrochemical synthesis, drying, solvent application and physical assembly. The invention also relates to a negative electrode that is comprised of etched, lithiated aluminum that is safer and lighter weight than conventional carbon based lithium-ion negative electrodes. The invention provides for improved methods for making negative and positive electrodes and for energy storage devices containing them. The invention provides sufficient stability in organic solvent and electrolyte solutions, where the prior art processes commonly fail. The invention further provides stability during repetitive charge and discharge. The invention also provides for novel microstructure protecting support membranes to be used in an energy storage device.
Abstract:
Electrical connectors are adapted to provide a reliable electrical connection to mating elements of a mating connector. The connector can have sockets that accept mating elements of the mating connector. Conductors of the connector are associated with each socket and make electrical contact with mating elements received therein. A loading band of the connector is tensioned to provide a contact force between the conductor and the mating element when the mating connector is in the socket. Electrical connectors constructed in this manner can provide increased current density and/or a more reliable connection between the conductors and the mating element.