Abstract:
Methods for cleaning an electrode assembly, which can be used for etching a dielectric material in a plasma etching chamber after the cleaning, comprise polishing a silicon surface of the electrode assembly, preferably to remove black silicon contamination therefrom.
Abstract:
Methods for making thin-films on semiconductor substrates, which may be patterned using EUV, include: depositing the organometallic polymer-like material onto the surface of the semiconductor substrate, exposing the surface to EUV to form a pattern, and developing the pattern for later transfer to underlying layers. The depositing operations may be performed by chemical vapor deposition (CVD), atomic layer deposition (ALD), and ALD with a CVD component, such as a discontinuous, ALD-like process in which metal precursors and counter-reactants are separated in either time or space.
Abstract:
A method of performing 3D printing of a silicon component includes adding powdered silicon to a 3D printing tool. For each layer of the 3D printing, the process includes forming a powder bed of the powdered silicon, forming a layer of the powder bed to a pre-determ ined thickness, directing a high-powered beam in a pre-determ ined pattern into the powder-bed to melt the powdered silicon. After no further layers are needed, the silicon component is cooled at a pre-determ ined temperature ramp-down rate. In a fully dense printing method, buffer layers of silicon are initially printed on a steel substrate, and then layers of silicon for the actual component are printed on top of the buffer layers using a double printing method. In a fully dense and crack free printing method, one or more heaters and thermal insulation are used to minimize temperature gradient during Si printing, in-situ annealing, and cooling.
Abstract:
A system comprises an apparatus having a nozzle. An element is arranged around the apparatus. A feeder is configured to supply a powder of a material into the apparatus. A gas source is configured to supply a precursor gas into the apparatus and to supply an inert gas to circulate through a space between the element and the apparatus and to exit around the nozzle. A plasma generator is arranged in the apparatus and is configured to ionize the precursor gas and atomize the powder and to eject through the nozzle a jet of particles composed of the atomized powder and the ionized precursor gas onto a substrate arranged adjacent to the nozzle.