Abstract:
A detachable electrical device can be formed from a kit comprising a pair of component parts adapted for connection to each other, wherein the connected components of the device may be subsequently disconnected, comprising: an array of electrical connectors, each electrical connector comprising an electrically conductive liquid; and an array of electrodes; wherein the arrays can be brought into contact with each other so as to provide a plurality of electrical connections between the electrically conductive liquid of the array of electrical connectors and the electrodes of the array of electrodes, and wherein the electrical connections may be subsequently broken by detaching the electrically conductive liquid from the electrodes of the array.
Abstract:
An apparatus for supporting an array of layers of amphiphilic molecules, the apparatus comprising: a body,formed in a surface of the body, an array of sensor wells capable of supporting a layer of amphiphilic molecules across the sensor wells, the sensor wells each containing an electrode for connection to an electrical circuit, and formed in the surface of the body between the sensor wells, flow control wells capable of smoothing the flow of a fluid across the surface.
Abstract:
An array of membranes comprising amphipathic moleculesis formed using an apparatus comprising a support defining an array of compartments. Volumes comprising polar medium are provided within respective compartments and a layer comprising apolar medium is provided extending across the openings with the volumes. Polar medium is flowed across the support to displace apolar medium and form a layer in contact with the volumes, forming membranes comprising amphipathic molecules at the interfaces. In one construction of the apparatus, the support that comprises partitions which comprise inner portions and outer portions. The inner portions define inner recesses without gaps therebetween that are capable of constraining the volumes comprising polar medium contained in neighbouring inner recesses from contacting each other. The outer portions extend outwardly from the inner portions and have gaps allowing the flow of an apolar medium across the substrate.
Abstract:
The invention provides a method of forming a membrane between a first volume of polar medium and a second volume of polar medium, which method comprises: (a) providing a first volume comprising polar medium and a second volume comprising polar medium which are separated from one another by an apolar medium, wherein at least one of said first and second volumes comprises a layer comprising amphipathic molecules, at the interface between the polar medium and the apolar medium, wherein each of the amphipathic molecules comprises a first outer hydrophilic group, a hydrophobic core group, and a second outer hydrophilic group, wherein each of the first and second outer hydrophilic groups is linked to the hydrophobic core group; and (b) causing the first and second volumes to come into contact with one another to form a membrane comprising said amphipathic molecules between the first and second volumes. The invention also provides a system comprising a membrane between a first volume of a polar medium; and a second volume of a polar medium, which membrane comprises the amphipathic molecules, and wherein the first volume of polar medium is within an apolar medium.
Abstract:
There is disclosed a nanopore support structure comprising a wall layer comprising walls defining a plurality of wells, and overhangs extending from the walls across each of the wells, the overhang defining an aperture configured to support a membrane suitable for insertion of a nanopore. There is further disclosed a nanopore sensing device comprising a nanopore support structure, and methods of manufacturing the nanopore support structure and the nanopore sensing device.
Abstract:
Provided herein is a method of concentrating a tethering complex in a region of an amphiphilic layer, such as a lipid membrane. Also provided herein are methods of assembling a tethering complex; methods of concentrating an analyte in the region of a detector; amphiphilic layers; and arrays and devices for use in the disclosed methods.