Abstract:
A liquid evaluation system can include a cartridge including a channel configured to pull a liquid into the channel by capillary action. The cartridge can include a first plate and a second plate located in close proximity to the first plate. An internal facing surface of each plate can include a corresponding region forming the channel. Each of the regions can have an affinity for the liquid. The close proximity of the plates and the regions having an affinity for the liquid cause the liquid to be pulled into the channel by capillary action. The cartridge can include one or more additional attributes and/or the system can include one or more additional components for performing the evaluation.
Abstract:
There is provided a method of charging an array of micro-capillaries, the micro-capillaries having at least one end that is open for fluid communication, the method comprising the steps of: (a) filling the array of micro-capillaries with an assay liquid; (b) controllably evaporating at least some of the assay liquid to remove it from the microcapillary and creating a void space in each of the capillaries between the assay liquid and the open end; and (c) filling the void space with a liquid that is immiscible with said assay liquid. There is also provided a use of the disclosed method for conducting a polymerase chain reaction and a device for charging an array of micro-capillaries.
Abstract:
A composition, including a substrate having a planar array of depressions each defined by concave walls and a moat disposed around each depression of said array of depressions.
Abstract:
An assay assembly that includes an assay bar having a plurality flow cells is disclosed. Each of the flow cells includes an inlet, an outlet, and an inside surface defining an inner volume. The outlet includes a valve that is configured to retain liquid within the inner volume of the flow cell. Each assay bar is configured to be reversibly stacked upon another assay bar, such that the flow cells of the stacked assay bars are in fluid communication with each other. This way, the outlet of a first flow cell of a first assay bar is in fluid communication with the inlet of a second flow cell of a second assay bar. The assay assembly may include a multitude of assay bars to form a composite assay assembly, with the flow cells of the stacked assay bars being in fluid communication with each other.
Abstract:
A biological analysis system is provided. The system comprises an interchangeable assembly configured to accommodate any one of a plurality of sample holders, each respective sample holder configured to receive a plurality of samples. The system also includes a control system configured to cycle the plurality of samples through a series of temperatures. The system further includes an optical system configured to detect fluorescent signals emitted from the plurality of samples. The optical system, in particular, can comprise a single field lens, an excitation source, an optical sensor, and a plurality of filter components. The excitation source can be one or more light emitting diodes. The field lens can be a bi-convex lens.
Abstract:
The present invention describes a spatial addressing technique that uses a very high-density micro-pore array for high-throughput screening of biological interactions. The therapeutic, diagnostic and drug-discovery implications of being able to identify, select and characterize specific protein-protein, protein-DNA and/or protein-carbohydrate interactions from heterogeneous populations of millions (to billions) of cells is discussed. Importantly, this technique possesses the screening and selection capacity of current display-based screening systems (i.e. millions-billions) but with greater efficiency and shorter time.
Abstract:
The present disclosure relates general to devices, systems, and methods of using such devices in creating and handling hanging drops of fluid. The present disclosure also relates to cell culture devices, methods and/or systems of using such devices as well as the use of cell culture devices, for example, for research and high throughput screening.
Abstract:
A cell culture apparatus includes a substrate having formed therein a micro-pillared well array. The micro-pillared well array includes a plurality of micro-pillared wells. Each micro-pillared structure includes a plurality of spaced-apart micro-pillars having distal ends shaped to form a well. The well is suitable for cell culture.
Abstract:
One aspect of the invention provides container for thermal cycling a plurality of samples in a microfluidic array. The container includes a plurality of walls defining an interior volume and a conductive member for heating the interior volume. Another aspect of the invention provides container for thermal cycling a plurality of samples in a microfluidic array. The container includes a plurality of walls defining an interior volume and a plurality of conductive members for heating an interior volume. Another aspect of the invention provides a container for thermal cycling a plurality of samples in a microfluidic array. The container includes a plurality of walls defining an interior volume and a first conductive member located in the interior volume and adapted to contact a first end of the microfluidic array.
Abstract:
A biosensor array, system and method for affinity based assays that are able to simultaneously obtain high quality measurements of the binding characteristics of multiple analytes, and that are able to determine the amounts of those analytes in solution. The invention also provides a fully integrated bioarray for detecting real-time characteristics of affinity based assays.