Abstract:
The invention provides integrated Organ-on-Chip microphysiological systems representations of living Organs and support structures for such microphysiological systems.
Abstract:
The present invention is directed to systems and methods for delivering aerosolized micro-droplets into microfluidic devices. In some embodiments, the microfluidic devices are designed for the culture of living cells at an air interface. In some embodiments, the systems and methods described herein can be used to deliver aerosolized micro-droplet into detection systems and small animals, tissues, organs and organisms.
Abstract:
Described herein are microfluidic modules and methods for making the same, wherein the microfluidic modules include a substrate comprising at least one ether-based, aliphatic polyurethane, and at least one fluidic element disposed therein. The ether-based aliphatic polyurethane can be either the substrate of the microfluidic modules or a coating of another substrate material, such that at least a portion of the ether-based, aliphatic polyurethane is in fluid communication. In one embodiment, the ether-based, aliphatic polyurethane includes dicyclohexylmethane-4, 4'-diisocyanate. As the ether-based aliphatic polyurethane can decrease absorption of molecules, e.g., hydrophobic molecules, in such microfluidic modules, the microfluidic modules described herein can be used in various applications such as drug screening and fluorescent microscopy.
Abstract:
Provided herein relates to systems and methods for producing and using a body having a central channel separated by one or more membranes. The membrane(s) are configured to divide the central channel into at least one mesochannel and at least one microchannel. The height of the mesochannel is substantially greater than the height of the microchannel. A gaseous fluid can be applied through the mesochannel while a liquid fluid flowing through the microchannel. The systems and methods described herein can be used for various applications, including, e.g., growth and differentiation of primary cells such as human lung cells, as well as any other cells requiring low shear and/also stratified structures, or simulation of a microenvironment in living tissues and/or organs (to model physiology or disease states, and/or to identify therapeutic agents and/or vaccines). The systems and methods can also permit co-culture with one or more different cell types.
Abstract:
Disclosed herein are organ chips that can be individually used or integrated together to form different microphysiological systems, e.g., for use in cell culturing, drug screening, toxicity assays, personalized therapeutic treatment, scaffolding in tissue repair and/or replacement, and/or pharmacokinetic or pharmacodynamics studies.