Abstract:
A device is directed to simulating a function of a tissue, and includes a first structure defining a first chamber, a second structure defining a second chamber, and a porous membrane located at an interface region between the first chamber and the second chamber. The membrane has a first side facing toward the first chamber and a second side facing toward the second chamber, the membrane separating the first chamber from the second chamber. The first side includes a fluid-permeable, stimulus-responsive polymer gel thereon, the second side including at least one layer of cells adhered thereon.
Abstract:
An organomimetic device includes a microfluidic device that can be used to culture cells in its microfluidic channels. The organomimetic device can be part of dynamic system that can apply mechanical forces to the cells by modulating the microfluidic device and the flow of fluid through the microfluidic channels. The membrane in the organomimetic device can be modulated mechanically via pneumatic means and/or mechanical means. The organomimetic device can be manufactured by the fabrication of individual components separately, for example, as individual layers that can be subsequently laminated together.
Abstract:
Described herein are methods for diagnosis and treatment of chronic obstructive pulmonary disease (COPD) exacerbation and/or therapy monitoring based in part on the level of macrophage colony-stimulating factor (M-CSF) expression and/or activity. Methods for diagnosis and treatment of COPD patients using novel molecular signature(s) are also provided. Methods for identifying subjects with COPD exacerbations who are more likely to be responsive to and benefit from a therapy that targets virus-induced exacerbations or non-infective COPD exacerbations are also described herein.
Abstract:
A microfluidic system for determining a response of cells comprises one or more fluid pumps. The one or more fluid pumps move a fluid across cells within a microfluidic device. The microfluidic device includes a microchannel at least partially defined by a surface having cells adhered thereto, a first port at one end of the microchannel, and a second port at an opposing end of the microchannel. The one or more fluid pumps move the fluid across the cells in a first direction toward the second port and then move the fluid across the cells in a second direction toward the first port.
Abstract:
A device is directed to simulating a function of a tissue, and includes a first structure defining a first chamber, a second structure defining a second chamber, and a porous membrane located at an interface region between the first chamber and the second chamber. The membrane has a first side facing toward the first chamber and a second side facing toward the second chamber, the membrane separating the first chamber from the second chamber. The first side includes a fluid-permeable, stimulus-responsive polymer gel thereon, the second side including at least one layer of cells adhered thereon.
Abstract:
A clamping system for a microfluidic device includes a compression plate engaging a side of a microfluidic device. A compression device provides compressive forces. The compression device is operatively connected to the compression plate such that the compressive forces create a substantially uniform pressure on the side of the microfluidic device.
Abstract:
Provided herein relates to systems and methods for producing and using a body having a central channel separated by one or more membranes. The membrane(s) are configured to divide the central channel into at least one mesochannel and at least one microchannel. The height of the mesochannel is substantially greater than the height of the microchannel. A gaseous fluid can be applied through the mesochannel while a liquid fluid flowing through the microchannel. The systems and methods described herein can be used for various applications, including, e.g., growth and differentiation of primary cells such as human lung cells, as well as any other cells requiring low shear and/also stratified structures, or simulation of a microenvironment in living tissues and/or organs (to model physiology or disease states, and/or to identify therapeutic agents and/or vaccines). The systems and methods can also permit co-culture with one or more different cell types.