Abstract:
Various read level control apparatuses and methods are provided. In various embodiments, the read level control apparatuses may include an error control code (ECC) decoding unit for ECC decoding data read from a storage unit, and a monitoring unit for monitoring a bit error rate (BER) based on the ECC decoded data and the read data. The apparatus may additionally include an error determination unit for determining an error rate of the read data based on the monitored BER, and a level control unit for controlling a read level of the storage unit based on the error rate.
Abstract:
Example embodiments may relate to a method and an apparatus for reading data stored in a memory, for example, providing a method and an apparatus for controlling a reference voltage based on an error of the stored data. Example embodiments may provide a memory data detecting apparatus including a first voltage comparator to compare a threshold voltage of a memory cell with a first reference voltage, a first data determiner to determine a value of at least one data bit stored in the memory cell according to a result of the comparison, an error verifier to verify whether an error occurs in the determined value, a reference voltage determiner to determine a second reference voltage that is lower than the first reference voltage based on a result of the verification, and a second data determiner to re-determine the value of the data based on the determined second reference voltage.
Abstract:
Multi-bit programming apparatuses and methods are provided. A multi-bit programming apparatus may include: a first programming unit that stores data corresponding to a number of first bits in at least one first memory cell that may be connected to at least one first bit line; and a second programming unit that stores data corresponding to a number of second bits in at least one second memory cell that may be connected to at least one second bit line. Through this, it may be possible to improve data reliability and increase a number of bits to be stored in the entire memory cell.
Abstract:
A multi-bit programming device and method for a non-volatile memory are provided. In one example embodiment, a multi-bit programming device may include a multi-bit programming unit configured to multi-bit program original multi-bit data to a target memory cell in a memory cell array, and a backup programming unit configured to select backup memory cells in the memory cell array with respect to each bit of the original multi-bit data, and program each bit of the original multi-bit data to a respective one of the selected backup memory cells.
Abstract:
Example embodiments may provide a memory device and memory data reading method. The memory device according to example embodiments may include a multi-bit cell array, an error detector which may read a first data page from a memory page in the multi-bit cell array and may detect an error-bit of the first data page, and an estimator which may identify a multi-bit cell where the error-bit is stored and may estimate data stored in the identified multi-bit cell among data of a second data page. Therefore, the memory device and memory data reading method may have an effect of reducing an error when reading data stored in the multi-bit cell and monitoring a state of the multi-bit cell without additional overhead.
Abstract:
Disclosed are an apparatus and a method for reading data. The method for reading data according to example embodiments includes comparing a threshold voltage of a memory cell with a first boundary voltage, comparing the threshold voltage with a second boundary voltage having a higher voltage level than that of the first boundary voltage, and determining data of the memory cell based on the threshold voltage, the first boundary voltage, and the second boundary voltage.
Abstract:
An Error Control Code (ECC) apparatus applied to a memory of a Multi-Level Cell (MLC) method may include: a bypass control signal generator generating a bypass control signal; and an ECC performing unit that may include at least two ECC decoding blocks, determining whether to bypass a portion of the at least two ECC decoding blocks based on the bypass control signal, and/or performing an ECC decoding. In addition or in the alternative, the ECC performing unit may include at least two ECC encoding blocks, determining whether to bypass a portion of the at least two ECC encoding blocks based on the bypass control signal, and/or performing an ECC encoding. An ECC method applied to a memory of a MLC method and a computer-readable recording medium storing a program for implementing an EEC method applied to a memory of a MLC method are also disclose.
Abstract:
Disclosed are a memory device and a memory data reading method. The memory device may include a multi-bit cell array, a threshold voltage detecting unit configured to detect first threshold voltage intervals including threshold voltages of multi-bit cells of the multi-bit cell array from among a plurality of threshold voltage intervals, a determination unit configured to determine data of a first bit layer based on the detected first threshold voltage intervals, and an error detection unit configured to detect an error bit of the data of the first bit layer. In this instance, the determination unit may determine data of a second bit layer using a second threshold voltage interval having a value of the first bit layer different from the detected error bit and being nearest to a threshold voltage of a multi-bit cell corresponding to the detected error bit.
Abstract:
A memory device and a memory device heat treatment method are provided. The memory device may include: a non-volatile memory device; one or more heating devices configured to contact with the non-volatile memory device and heat the non-volatile memory device; and a controller configured to control an operation of the one or more heating devices based on operational information of the non-volatile memory device. Through this, it may be possible to improve an available period of the non-volatile memory device.
Abstract:
Multi-bit programming apparatuses and/or methods are provided. A multi-bit programming apparatus may comprise: a multi-bit cell array that includes a first multi-bit cell and a second multi-bit cell; a programming unit for programming first data in the first multi-bit cell, and programming second data in the second multi-bit cell; and a verification unit for verifying whether the first data is programmed in the first multi-bit cell using a first verification voltage, and verifying whether the second data is programmed in the second multi-bit cell using a second verification voltage. The multi-bit programming apparatus may generate better threshold voltage distributions in a multi-bit cell memory.