Abstract:
Provided are memory devices and memory programming methods. A memory device may include a multi-bit cell array including a plurality of multi-bit cells, a programming unit configured to program a first data page in the plurality of multi-bit cells and to program a second data page in the multi-bit cells with the programmed first data page, a first controller configured to divide the multi-bit cells with the programmed first data page into a first group and a second group, and a second controller configured to set a target threshold voltage interval of each of the multi-bit cells included in the first group based on first read voltage levels and the second data page, and to set a target threshold voltage interval of each of the multi-bit cells included in the second group based on second read threshold voltage levels and the second data page.
Abstract:
Provided are memory devices and memory data read methods. A method device may include: a multi-bit cell array; a decision unit that may detect threshold voltages of multi-bit cells of the multi-bit cell array to decide first data from the detected threshold voltages, using a first decision value; an error detector that may detect an error bit of the first data; and a determination unit that may determine whether the decision unit decides second data from the detected threshold voltages using a second decision value, based on a number of detected error bits, the second decision value being different from the first decision value. Through this, it is possible to reduce time spent for reading data stored in the multi-bit cell.
Abstract:
According to an example embodiment, a method of generating a soft decision value using an Analog-to-Digital Converter (ADC) having a given resolution may include receiving metric values calculated based on levels of a transmission signal and output levels of the ADC. Metric values corresponding to a level of a received signal may be selected from among the received metric values. A first maximum metric value may be detected from among the selected metric values when a transmission bit is a first level, and a second maximum metric value may be detected from among the selected metric values when the transmission bit is a second level. The soft decision value may be generated based on a difference between the first maximum metric value and the second maximum metric value.
Abstract:
Memory devices and/or methods of managing memory data errors are provided. A memory device detects and corrects an error bit of data read from a plurality of memory cells, and identifies a memory cell storing the detected error bit. The memory device assigns a verification voltage to each of the plurality of first memory cells, the assigned verification voltage corresponding to the corrected bit for the identified memory cell, the assigned verification voltage corresponding to the read data for the remaining memory cells. The memory device readjusts the data stored in the plurality of memory cells using the assigned verification voltage. Through this, it is possible to increase a retention period of the data of the memory device.
Abstract:
Disclosed are a memory device and a data decision method. The memory device may include a memory cell array, and a decision unit configured to read first data from the memory cell array via a first channel, perform at least one of a hard and soft decision on the first data using a first number of decision levels set based on characteristics of the first channel, read second data from the memory cell array via a second channel, and perform a soft decision on the second data using a second number of decision levels set based on characteristics of the second channel.
Abstract:
The data detecting apparatus may provide a voltage comparison unit that compares a reference voltage, associated with a specific data bit from among a plurality of data bits stored in a memory cell, with a threshold voltage in the memory cell, a detection unit that detects a value of the specific data bit based on a result of the voltage comparison unit, and a decision unit that decides whether the specific data bit is successfully detected based on whether an error occurs in the detected data. The detection unit may re-detect a value of the specific data bit based on detection information with respect to at least one of an upper data bit and a lower data bit in relation to the specific data bit, in response to a result of the decision unit.
Abstract:
Various read level control apparatuses and methods are provided. In various embodiments, the read level control apparatuses may include an error control code (ECC) decoding unit for ECC decoding data read from a storage unit, and a monitoring unit for monitoring a bit error rate (BER) based on the ECC decoded data and the read data. The apparatus may additionally include an error determination unit for determining an error rate of the read data based on the monitored BER, and a level control unit for controlling a read level of the storage unit based on the error rate.
Abstract:
Disclosed are a memory device and a memory data reading method. The memory device may include a multi-bit cell array, a threshold voltage detecting unit configured to detect first threshold voltage intervals including threshold voltages of multi-bit cells of the multi-bit cell array from among a plurality of threshold voltage intervals, a determination unit configured to determine data of a first bit layer based on the detected first threshold voltage intervals, and an error detection unit configured to detect an error bit of the data of the first bit layer. In this instance, the determination unit may determine data of a second bit layer using a second threshold voltage interval having a value of the first bit layer different from the detected error bit and being nearest to a threshold voltage of a multi-bit cell corresponding to the detected error bit.
Abstract:
A memory device and a memory device heat treatment method are provided. The memory device may include: a non-volatile memory device; one or more heating devices configured to contact with the non-volatile memory device and heat the non-volatile memory device; and a controller configured to control an operation of the one or more heating devices based on operational information of the non-volatile memory device. Through this, it may be possible to improve an available period of the non-volatile memory device.
Abstract:
Multi-bit programming apparatuses and/or methods are provided. A multi-bit programming apparatus may comprise: a multi-bit cell array that includes a first multi-bit cell and a second multi-bit cell; a programming unit for programming first data in the first multi-bit cell, and programming second data in the second multi-bit cell; and a verification unit for verifying whether the first data is programmed in the first multi-bit cell using a first verification voltage, and verifying whether the second data is programmed in the second multi-bit cell using a second verification voltage. The multi-bit programming apparatus may generate better threshold voltage distributions in a multi-bit cell memory.