Abstract:
Provided is a process that may comprise cooling an engine exhaust emissions comprising SOx on a vehicle that may come from an engine. The cooled engine exhaust emissions comprising SOx may be passed to one or more absorption units. The SOx may be extracted from the engine exhaust emissions with a sorbent supported on solid porous media in an absorption unit on the vehicle to form an absorbed SOx. The absorbed SOx may be desorbed, followed by forming one or more SOx product from the desorbed SOx. The one or more SOx product may be unloaded to an off-vehicle facility.
Abstract:
A method of preventing formation of a water and oil emulsion in a downhole formation containing oil, the method comprises preparing a dispersion of water and a plurality of non- functionalized nanoparticles, each nanoparticle in the plurality of nanoparticles having a size of at least 300 nanometers, and injecting the mixture downhole into contact with the oil downhole. Presence of the plurality of nanoparticles prevents formation of an emulsion between the injected water and the oil.
Abstract:
Systems and methods are disclosed relating to composite photonic materials used to design structures and detect material deformation for the purpose of monitoring structural health of physical structures. According to one aspect, a composite structure is provided that includes a base material, an optical diffraction grating and one or more fluorophore materials constructed such that localized perturbations create a measureable change in the structure's diffraction pattern. An inspection device is also provided which is configured to detect perturbations in the composite structure. The inspection device is configured to emit an inspecting radiation into the structure and capture the refracted radiation and measure the change in the diffraction pattern and quantify the perturbation based on the wavelength and the angular information for the diffracted radiation.
Abstract:
Photovoltaic modules (100) include a front sheet (10), a back sheet (20), a photovoltaic layer (30), a first encapsulant layer (40), and a second encapsulant layer (50). The front sheet is made of or includes a composite of a thermoplastic material and a nanoparticle filler dispersed in the thermoplastic material. The thermoplastic material is a poly(methyl methacrylate) or a polycarbonate. The nanoparticle filler may include nanoparticles such as silica nanoparticles, titania nanoparticles, zirconia nanoparticles, zinc oxide nanoparticles, and combinations thereof, for example. The photovoltaic layer is interposed between the front sheet and the back sheet and includes at least one photovoltaic cell. The first encapsulant layer is interposed between the front sheet and the at least one photovoltaic cell. The second encapsulant layer is interposed between the at least one photovoltaic cell and the back sheet.
Abstract:
An anti-corrosive coating for a substrate surface comprises an insulation layer positioned over the substrate and a cured epoxy layer positioned on the insulation layer, the cured epoxy layer including a plurality of nanoparticles having diameters within a range of about 200 nm to about 350 nm. Water droplets positioned on an external surface of the cured epoxy layer form a contact angle of at least 130 degrees.
Abstract:
A method for producing mesophase pitch includes the steps of flushing a vessel with an at least substantially inert gas to remove air and oxygen from the vessel; charging the vessel with a hydrocarbon feed; pressurizing the vessel to an initial increased pressure; heating the vessel to a pre-determined temperature; and maintaining the vessel at the pre-determined temperature for an amount of time operable to upgrade the hydrocarbon feed to a product comprising mesophase pitch.
Abstract:
Exhaust gas is treated onboard a vehicle. Solar energy is converted into electricity, which is used to power an electrochemical cell mounted onboard the vehicle. Oxygen and hydrogen are produced by the electrochemical cell. Heat and the oxygen produced by the electrochemical cell are provided to a particulate matter filter onboard the vehicle, thereby oxidizing particulate matter disposed on the particulate matter filter.
Abstract:
An integrated method for mesophase pitch and petrochemicals production. The method including supplying crude oil to a reactor vessel; heating the crude oil in the reactor vessel to a predetermined temperature for a predetermined amount of time; reducing asphaltene content in the crude oil by allowing polymerization reactions to occur in the reactor vessel at an elevated pressure in the absence of oxygen; producing a three-phase upgraded hydrocarbon product comprising gas, liquid, and solid hydrocarbon components, where the liquid hydrocarbon component comprises deasphalted oil and the solid hydrocarbon component comprises mesophase pitch; separating the gas, liquid, and solid hydrocarbon components; directly utilizing the liquid hydrocarbon component for petrochemicals production; and directly utilizing the solid hydrocarbon component for carbon artifact production.
Abstract:
Systems and methods for treating automotive vehicle emissions on board an automotive vehicle include the use of waste heat recovery, electrochemical water splitting, phototcatalytic water splitting, and selective catalytic reduction. Waste heat recovery is used to power electrochemical water splitting, or photocatalytic water splitting. Photons collected from a solar panel are used in photocatalytic water splitting, or in photo-assisted selective catalytic reduction. Hydrogen gas generated by water splitting is used in conjunction with catalytic reduction units to catalytically reduce NOx in an engine exhaust gas.
Abstract:
Systems and methods for treating automotive vehicle emissions on board an automotive vehicle include the use of waste heat recovery, electrochemical water splitting, photocatalytic water splitting, and selective catalytic reduction. Waste heat recovery is used to power electrochemical water splitting, or photocatalytic water splitting. Photons collected from a solar panel are used in photocatalytic water splitting, or in photo-assisted selective catalytic reduction. Hydrogen gas generated by water splitting is used in conjunction with catalytic reduction units to catalytically reduce NOx in an engine exhaust gas.