Abstract:
Systems and methods are disclosed for fabricating a semiconductor light- emitting diode (LED) device by forming an n-doped gallium nitride (n-GaN) layer on the LED device and roughening the surface of the n-GaN layer to extract light from an interior of the LED device.
Abstract:
Systems and methods for fabricating a light emitting diode include forming a multilayer epitaxial structure above a carrier substrate; depositing at least one metal layer above the multilayer epitaxial structure; removing the carrier substrate.
Abstract:
Techniques for fabricating contacts on inverted configuration surfaces of GaN layers of semiconductor devices are provided. An n-doped GaN layer may be formed with a surface exposed by removing a substrate on which the n-doped GaN layer was formed. The crystal structure of such a surface may have a significantly different configuration than the surface of an as-deposited p-doped GaN layer.
Abstract:
Techniques for fabricating metal devices, such as vertical light-emitting diode (VLED) devices, power devices, laser diodes, and vertical cavity surface emitting laser devices, are provided. Devices produced accordingly may benefit from greater yields and enhanced performance over conventional metal devices, such as higher brightness of the light-emitting diode and increased thermal conductivity. Moreover, the invention discloses techniques in the fabrication arts that are applicable to GaN-based electronic devices in cases where there is a high heat dissipation rate of the metal devices that have an original non- (or low) thermally conductive and/or non- (or low) electrically conductive carrier substrate that has been removed.
Abstract:
A method for the separation of multiple dies during semiconductor fabrication is described. On an upper surface of a semiconductor wafer containing multiple dies, a seed metal layer may be used to grow hard metal layers above it for handling. Metal may be plated above these metal layers everywhere except where a block of stop electroplating (EP) material exists. The stop EP material may be obliterated, and a barrier layer may be formed above the entire remaining structure. The substrate may be removed, and the individual dies may have any desired bonding pads and/or patterned circuitry added to the semiconductor surface. The remerged hard metal after laser cutting and heating should be strong enough for handling. Tape may be added to the wafer, and a breaker may be used to break the dies apart. The resulting structure may be flipped over, and the tape may be expanded to separate the individual dies.
Abstract:
A method for the separation of multiple dies during semiconductor fabrication is described. On an upper surface of a semiconductor wafer containing multiple dies, metal layers are deposited everywhere except where a block of stop electroplating material exists. The stop electroplating material is obliterated, and a barrier layer is formed above the entire remaining structure. A sacrificial metal element is added above the barrier layer, and then the substrate is removed. After the semiconductor material between the individual dies is eradicated, any desired bonding pads and patterned circuitry are added to the semiconductor surface opposite the sacrificial metal element, a passivation layer is added to this surface, and then the sacrificial metal element is removed. Tape is added to the now exposed barrier layer, the passivation layer is removed, the resulting structure is flipped over, and the tape is expanded to separate the individual dies.
Abstract:
Techniques for controlling current flow in semiconductor devices, such as LEDs are provided. For some embodiments, a current guiding structure may be provided including adjacent high and low contact areas. For some embodiments, a second current path (in addition to a current path between an n-contact pad and a metal alloy substrate) may be provided. For some embodiments, both a current guiding structure and second current path may be provided.
Abstract:
A method to fill the flowable material into the semiconductor assembly module gap regions is described. In an embodiment, multiple semiconductor units are formed on the substrate to create an array module; the array module is attached to a backplane having circuitry to form the semiconductor assembly module in which multiple gap regions are formed inside the semiconductor assembly module and edge gap regions are formed surround an edge of the assembly module. The flowable material is forced inside the gap regions by performing the high acting pressure environment and then cured to be a stable solid to form a robustness structure. A semiconductor convert module is formed by removing the substrate utilizing a substrate removal process. A semiconductor driving module is formed by utilizing a connecting layer on the semiconductor convert module. In one embodiment, a vertical light emitting diode semiconductor driving module is formed to light up the vertical LED array. In another one embodiment, multiple color emissive light emitting diodes semiconductor driving module is formed to display color images. In another embodiment, multiple patterns of semiconductor units having multiple functions semiconductor driving module is formed to provide multiple functions for desire application.
Abstract:
A light-emitting diode (LED) comprises: a metal substrate(201); an LED stack for emitting light disposed above the metal substrate(201), wherein the LED stack provides a first current path for the LED; and a second current path(402) for the LED different from the first current path. The LED stack comprises a p-type semiconductor layer(110) and an n-type semiconductor layer(106) disposed above the p-type semiconductor layer(110). The LED may have the advantages of current guiding and transient suppression.