Abstract:
An apparatus with first and second transparent conductive oxide layers is described. A photoconductive layer can be positioned between the first and a second transparent conductive oxide layers. The photoconductive layer can be a crystalline layer that can include bismuth silicate or other suitable materials. An electro-optical layer is positioned in contact with the photoconductive layer. In some embodiments the photoconductive layer is positionable to receive a write beam that defines a two-dimensional spatial pattern.
Abstract:
A method and an apparatus for collecting powder samples in real-time in powder bed fusion additive manufacturing may involves an ingester system for in-process collection and characterizations of powder samples. The collection may be performed periodically and uses the results of characterizations for adjustments in the powder bed fusion process. The ingester system of the present disclosure is capable of packaging powder samples collected in real-time into storage containers serving a multitude purposes of audit, process adjustments or actions.
Abstract:
A print engine of an additive manufacturing system includes a print station configured to hold a removable cartridge. A laser engine including a frame can be positioned to hold at least one removable field replaceable unit that includes at least some laser optics or patterning optics. An optical alignment system can be attached to at least one of the print station or the laser engine to align the field replaceable unit with respect to the removable cartridge.
Abstract:
A method and an apparatus pertaining to recycling and reuse of unwanted light in additive manufacturing can multiplex multiple beams of light including at least one or more beams of light from one or more light sources. The multiple beams of light may be reshaped and blended to provide a first beam of light. A spatial polarization pattern may be applied on the first beam of light to provide a second beam of light. Polarization states of the second beam of light may be split to reflect a third beam of light, which may be reshaped into a fourth beam of light. The fourth beam of light may be introduced as one of the multiple beams of light to result in a fifth beam of light.
Abstract:
An additive manufacturing system including a two-dimensional energy patterning system for imaging a powder bed is disclosed. Improved structure formation, part creation and manipulation, use of multiple additive manufacturing systems, and high throughput manufacturing methods suitable for automated or semi-automated factories are also disclosed.
Abstract:
An apparatus and a method for powder bed fusion additive manufacturing involve a multiple-chamber design achieving a high efficiency and throughput. The multiple-chamber design features concurrent printing of one or more print jobs inside one or more build chambers, side removals of printed objects from build chambers allowing quick exchanges of powdered materials, and capabilities of elevated process temperature controls of build chambers and post processing heat treatments of printed objects. The multiple-chamber design also includes a height-adjustable optical assembly in combination with a fixed build platform method suitable for large and heavy printed objects.
Abstract:
A method and an apparatus for collecting powder samples in real-time in powder bed fusion additive manufacturing may involves an ingester system for in-process collection and characterizations of powder samples. The collection may be performed periodically and uses the results of characterizations for adjustments in the powder bed fusion process. The ingester system of the present disclosure is capable of packaging powder samples collected in real-time into storage containers serving a multitude purposes of audit, process adjustments or actions.
Abstract:
A method and an apparatus pertaining to polarization combining in additive manufacturing may involve emitting two or more beams of light with a first intensity. Each of the two or more beams of light may be polarized and may have a majority polarization state and a minority polarization state. A respective polarization pattern may be applied on the majority polarization state of each of the two or more beams of light. The two or more beams of light may be combined to provide a single beam of light.
Abstract:
A method of additive manufacture suitable for large and high resolution structures is disclosed. The method may include sequentially advancing each portion of a continuous part in the longitudinal direction from a first zone to a second zone. In the first zone, selected granules of a granular material may be amalgamated. In the second zone, unamalgamated granules of the granular material may be removed. The method may further include advancing a first portion of the continuous part from the second zone to a third zone while (1) a last portion of the continuous part is formed within the first zone and (2) the first portion is maintained in the same position in the lateral and transverse directions that the first portion occupied within the first zone and the second zone.
Abstract:
An additive manufacturing system including a two-dimensional energy patterning system for imaging a powder bed is disclosed. Improved chamber designs, multiple chambers, powder handling and re-use systems, and powder characterization methods are disclosed.