摘要:
Provided are methods for synthesizing metal nanowires in solution using an organic reducing agent. A reaction mixture can be provided in solution with a metal salt, the organic reducing agent, and a solvent, where the solvent includes a surface ligand or consists of a surface ligand. The organic reducing agent, such as benzoin, can be decomposed in the reaction mixture to form organic free radicals that reduce metal ions of the metal salt into metal. The surface ligand of the solvent can coordinate with the metal in a manner so that metal nanowires are formed in solution. The diameter and morphology of the nanowires, reaction speed, reaction yield, and other features may be tunable by adjusting parameters such as reaction temperature and chemistry of the reducing agent.
摘要:
A functionalized nanofluidic channel and method for functionalization that provides control over the ionic environment and geometry of the nanofluidic channel with the immobilization of biomolecules on the inner surface of the channel and use of high ionic concentration solutions. In one embodiment, the surface charge of the nanochannel is controlled with the immobilization of a protein such as streptavidin in the nanochannel. In another embodiment, the biomolecules are receptors and changes in nanochannel conductance indicates ligand binding events. The functionalized nanofluidic channel can be easily adapted for use with microchannel arrays.
摘要:
Methods for assembly of monolayers of nanoparticles using the Langmuir-Blodgett technique, as well as monolayers, assemblies, and devices are described. The surface properties of these monolayers are highly reproducible and well-defined as compared to other systems. These monolayers can readily be used for molecular detection in either an air-borne or a solution environment, and sensors using the monolayer could have significant implications in chemical and biological warfare detection, national and global security, as well as in medical detection applications.
摘要:
Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM 2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M 3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.
摘要翻译:已经描述了用于制造完全集成的纳米电喷雾发射器的新颖且显着简化的程序。 对于纳米制单体多喷嘴(NM 2发射体),使用在硅片上使用硅纳米线的自底向上方法。 对于微制造的单片多喷嘴(M 3 O 3发射体),使用在硅晶片上使用MEMS技术的自上而下的方法。 发射器具有与用于纳米电喷雾质谱法的市售二氧化硅毛细管发射体相当的性能。
摘要:
A method for controlling the crystallographic growth direction and geometric and physical characteristics of nanowires using a metal-organic chemical vapor deposition and substrate selection. As an illustration of the method, epitaxial growth of wurtzite gallium nitride on (100) y -LiAIO 2 and (111) MgO single crystal substrates resulted in the selective growth of nanowires in the orthogonal [110] and [001] directions, respectively. Triangular and hexagonal cross sections were observed as a result of substrate-induced constraints of lattice parameter matching and symmetry registry. These nanowire arrays exhibit a systematic difference in their temperature dependent band-edge emission resulting from the different size, shape, and anisotropic polarity of the nanostructures. Scaling of the synthetic process is entirely compatible with existing GaN thin-film technology and should enable the realization of a new generation of GaN nanowire devices and systems.
摘要:
Homogeneous and dense arrays of nanowires are described. The nanowires can be formed in solution and can have average diameters of 40-300 nm and lengths of 1-3 m. They can be formed on any suitable substrate. Photovoltaic devices are also described.
摘要:
Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar "epitaxial-casting" approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.
摘要:
Formaldehyde is obtained from CO2 through hydrogenation of CO2 to methanol while the subsequent oxidation of methanol yields formaldehyde. This formaldehyde combined with the electrochemically produced glycolaldehyde generates sugars, thus establishing a route from CO2 to sugars.
摘要:
A solution phase synthesis process for preparing a rare earth perovskite, the process includes reacting an alkali metal material with a first surfactant ligand in the presence of a first solvent to obtain a first precursor complex solution; reacting a rare earth metal halide with a second surfactant ligand in the presence of a second solvent to obtain a second precursor complex solution; and reacting the first precursor complex solution with the second precursor complex solution in the presence of a third surfactant ligand and a third solvent to obtain the rare earth perovskite; wherein: the rare earth perovskite is in the form of nanocrystals; and the first solvent and third solvent comprise a non-coordinating solvent.
摘要:
The present disclosure provides devices and methods for delivering a biomolecule into a cell. A delivery device of the present disclosure includes a first reservoir, a second reservoir, a porous membrane comprising a nanopore, and two or more electrodes configured to generate an electric field across the porous membrane for delivery of a biomolecule present in the second reservoir through the nanopore of the porous membrane and into a cell present in the first reservoir.