Abstract:
An electricity storage system includes an electricity storage device, a positive electrode line, a negative electrode line, a capacitor, at least two diodes, and a first intermediate line. The electricity storage device is able to supply power to a load. The electricity storage device includes at least two electricity storage groups connected in series. The electricity storage group includes at least two electricity storage elements connected in series. Each electricity storage element includes a current breaker. The capacitor is connected to the positive electrode line and the negative electrode line. At least two diodes are connected in series between the positive electrode line and the negative electrode line and are respectively connected in parallel to the electricity storage groups. The first intermediate line is connected between a first connection point and a second connection point. At the first connection point, the electricity storage groups are connected together. At the second connection point, the diodes are connected together.
Abstract:
An electric storage system includes ah, electric storage device. The electronic control unit executes estimation processing of calculating a present full charge capacity based on a decrease rate from an initial full charge capacity. The electronic control unit also calculates a decrease rate within a period of time in which full charge capacity is not estimated from after a previous full charge capacity has been calculated to a present time by using an average state of charge, an average battery temperature and a decrease rate map, and calculates a first elapsed period of time based on the decrease rate and the initial full charge capacity. The electronic control unit further calculates the present full charge capacity based on a present second elapsed period of time calculated from the first elapsed period and the non-estimation period of time, the decrease rate within the non-estimation period of time, and the initial full charge capacity.
Abstract:
A control for a vehicle including a battery, a load, an electric power controller controlling electric power exchanged between the battery and the load and a charger charging the battery using a power supply outside the vehicle includes: during vehicle drive control, controlling the electric power controller so that an SOC falls within a predetermined range; when the power supply is connected to the vehicle, controlling the electric power controller and the charger so as to carry out extended charging in which a variation in the SOC during the external charging is larger than a width of the predetermined range; and calculating the full charge capacity by multiplying a ratio of a maximum value of the SOC to a variation in the SOC during the extended charging by an accumulated value of current flowing into the battery during the extended charging.
Abstract:
A PM-ECU executes a program including: a step (S 104) of estimating pre-charge SOC(1) when a plug-in charge is started (YES in S100), a step (S108) of calculating an integrated value of charging current when integration permitting conditions are satisfied (YES in S104, YES in S106), a step (S112) of setting a final integrated value when the charge is completed, a step (S116) of estimating post-charge SOC(2) when an ignition switch is turned on (YES in S114), a step (S122) of calculating a full-charge capacity of this cycle when calculation conditions are satisfied (YES in S120), a step (S128) of calculating a new full-charge capacity when the full-charge capacity of this cycle is within a specified range (YES in S124), and a step (S130) of updating the full-charge capacity by setting the new full-charge capacity as the current full-charge capacity when the new full-charge capacity is within a specified range (YES in S128).