Abstract:
A gas turbine engine includes a very high speed low pressure turbine such that a quantity defined by the exit area of the low pressure turbine multiplied by the square of the low pressure turbine rotational speed compared to the same parameters for the high pressure turbine is at a ratio between about 0.5 and about 1.5.
Abstract:
A gas turbine engine has a fan rotor, a first compressor rotor and a second compressor rotor. The second compressor rotor compresses air to a higher pressure than the first compressor rotor. A first turbine rotor drives the second compressor rotor and a second turbine rotor. The second turbine drives the compressor rotor. A fan drive turbine is positioned downstream of the second turbine rotor. The fan drive turbine drives the fan through a gear reduction. The first compressor rotor and second turbine rotor rotate as an intermediate speed spool. The second compressor rotor and first turbine rotor together as a high speed spool. The high speed spool rotating in the same direction as the intermediate speed spool. The fan drive turbine rotates in an opposed direction as the intermediate speed spool.
Abstract:
A gas turbine engine typically includes a fan section, a compressor section, a combustor section and a turbine section. A speed reduction device such as an epicyclical gear assembly may be utilized to drive the fan section such that the fan section may rotate at a speed different than the turbine section so as to increase the overall propulsive efficiency of the engine. In such engine architectures, a shaft driven by one of the turbine sections provides an input to the epicyclical gear assembly that drives the fan section at a speed different than the turbine section such that both the turbine section and the fan section can rotate at closer to optimal speeds providing increased performance attributes and performance by desirable combinations of the disclosed features of the various components of the described and disclosed gas turbine engine.
Abstract:
A disclosed example geared turbofan engine includes a fan section including a plurality of fan blades rotatable about an axis and a core engine section defined about an engine axis. The core engine section includes a primary nozzle including a primary outer diameter at a primary nozzle trailing edge and a primary maximum inner diameter forward of the primary trailing edge. A bypass passage a secondary nozzle that includes an outer diameter at a secondary nozzle trailing edge and a secondary maximum inner diameter forward of the secondary trailing edge. A ratio between the maximum inner diameter of the primary nozzle and an outer diameter at the trailing edge of the primary nozzle and a ratio between the maximum inner diameter of the secondary trailing edge and the outer diameter at the trailing edge of the secondary nozzle are both less than about 0.700.
Abstract:
A gas turbine engine includes first and second shafts rotatable about a common axis. The gas turbine engine includes a fan, and first and second gear trains interconnected to one another and coupling the first shaft to fan.
Abstract:
A gas turbine engine includes a very high speed low pressure turbine such that a quantity defined by the exit area of the low pressure turbine multiplied by the square of the low pressure turbine rotational speed compared to the same parameters for the high pressure turbine is at a ratio between about 0.5 and about 1.5. The high pressure turbine is supported by a bearing positioned at a point where the first shaft connects to a hub carrying turbine rotors associated with the second turbine section.
Abstract:
A gas turbine engine includes a fan section and a compressor section. The compressor section includes both a first compressor section and a second compressor section. A turbine section includes at least one turbine and driving the second compressor section and a fan drive turbine driving at least a gear arrangement to drive the fan section. A power ratio is provided by the combination of the first compressor section and the second compressor section, with the power ratio being provided by a first power input to the first compressor section and a second power input to the second compressor section, the power ratio being equal to, or greater than, about 1.0 and less than, or equal to, about 1.4.
Abstract:
A gas turbine engine has a fan rotor, a first compressor rotor and a second compressor rotor. The second compressor rotor compresses air to a higher pressure than the first compressor rotor. A first turbine rotor drives the second compressor rotor and a second turbine rotor. The second turbine drives the compressor rotor. A fan drive turbine is positioned downstream of the second turbine rotor. The fan drive turbine drives the fan through a gear reduction. The first compressor rotor and second turbine rotor rotate as an intermediate speed spool. The second compressor rotor and first turbine rotor together as a high speed spool, with the high speed spool rotating in an opposed direction to the intermediate speed spool. The fan drive turbine rotates in the same direction as the intermediate speed spool.
Abstract:
A gas turbine engine includes a shaft and a turbine configured to drive the shaft. The turbine has at least one stage comprising a plurality of turbine vanes interspersed with a plurality of turbine blades. The plurality of vanes includes at least one variable vane movable between a closed position to reduce air flow and an open position to increase air flow. Movement of the at least one variable vane is controlled based on an engine limiting condition.
Abstract:
A gas turbine engine has a fan rotor, a first compressor rotor and a second compressor rotor. The second compressor rotor compresses air to a higher pressure than the first compressor rotor. A first turbine rotor drives the second compressor rotor and a second turbine rotor. The second turbine drives the compressor rotor. A fan drive turbine is positioned downstream of the second turbine rotor. The fan drive turbine drives the fan rotor through a gear reduction. The first compressor rotor and second turbine rotor rotate as an intermediate speed spool. The second compressor rotor and first turbine rotor together as a high speed spool. The high speed spool, the intermediate speed spool, and the fan drive turbine rotate in the same direction.