Abstract:
A gas turbine engine has a fan rotor, a first compressor rotor and a second compressor rotor. The second compressor rotor compresses air to a higher pressure than the first compressor rotor. A first turbine rotor drives the second compressor rotor and a second turbine rotor. The second turbine drives the compressor rotor. A fan drive turbine is positioned downstream of the second turbine rotor. The fan drive turbine drives the fan through a gear reduction. The first compressor rotor and second turbine rotor rotate as an intermediate speed spool. The second compressor rotor and first turbine rotor together as a high speed spool. The high speed spool and the fan drive turbine configured to rotate in the same first direction. The intermediate speed spool rotates in an opposed, second direction.
Abstract:
A mount for a turbine engine has a semi-circular yoke with a first leg and a second leg. The mount also has a stanchion with a cylindrical section attached to the yoke, and a conical section attached to the cylindrical section. A mounting bracket is attached to the conical section.
Abstract:
An integrally bladed rotor for use in a gas turbine engine includes a central hub; a plurality of airfoils extending from the central hub, each airfoil with a tip, a leading edge and a trailing edge; and a shroud with a metallic portion connecting to the tip of each airfoil to rotate with the airfoils.
Abstract:
An air-oil cooler (AOC) for a gas turbine engine is disclosed. The AOC may comprise an oil inlet, an oil outlet, and heat exchange elements between the oil inlet and the oil outlet. The AOC may be longitudinally positioned between a fan and a V-groove of the engine and radially spaced between a low pressure compressor and a low pressure compressor panel. A gas turbine engine comprising an AOC is disclosed. The AOC of the engine may comprise an oil inlet, an oil outlet, and heat exchange elements between the oil inlet and the oil outlet. The AOC of the engine may be longitudinally positioned between a fan and a V-groove of the engine and radially spaced between a low pressure compressor and a low pressure compressor panel. A method of operating an AOC for use on a gas turbine engine is also disclosed.
Abstract:
A mounting apparatus for a turbine exhaust case (TEC) is provided. The mounting apparatus may include a neck, support links and a plurality of fastening pins. The neck may include an upper portion that is receivable within a pylon associated with the TEC and at least one neck aperture extending therethrough. The support links may downwardly extend from a lower portion of the neck. The support links may be configured to at least partially receive a section of the TEC. Each support link may include at least one link aperture extending therethrough. The fastening pins may include at least one neck pin extending through the neck aperture and at least one link pin extending through the link aperture of each support link.
Abstract:
A compressor for a turbine engine includes an inflatable bleed valve that selectively bleeds core airflow from the compressor. The bleed valve has an inlet leading from the compressor and a passageway leading from the inlet. An inflatable valve selectively obstructs the passageway based upon a controlled supply of high pressure air to the inflatable valve. The supply of high pressure air may be compressed core airflow from an area downstream of the inlet to the bleed valve.
Abstract:
A turbine engine includes a plurality of variable fan inlet guide vanes. Where the turbine engine is a tip turbine engine, the variable fan inlet guide vanes permit the ability to control engine stability even though the fan-turbine rotor assembly is directly coupled to the axial compressor at a fixed rate. The fan inlet guide vanes may be actuated from an inner diameter of the fan inlet guide vanes.
Abstract:
A compressor intermediate case for a gas turbine engine includes a plurality of intermediate case struts joining the compressor intermediate case to an inner engine structure. Each strut of the plurality of intermediate case struts includes a leading edge. A turning scoop is disposed at the leading edge of each strut of the plurality of intermediate case struts. A plurality of diffusers extends radially outwardly from the compressor intermediate case so that each diffuser of the plurality of diffusers engages with a corresponding turning scoop. A substantially annular structural fire wall extends radially outwardly from the compressor intermediate case. An environmental control system manifold is disposed on the compressor intermediate case. The environmental control system manifold includes an exit port.
Abstract:
High modulus turbine shafts and high modulus cylindrical articles are described as are the process parameters for producing these shafts and cylindrical articles. The shafts/articles have a high Young's modulus as a result of having high modulus crystal texture along the longitudinal axis of the shaft/article. The shafts are produced from directionally solidified seeded single crystal cylinders that are axisymmetrically hot worked before a limited recrystallization process is carried out at a temperature below the recrystallization temperature of the alloy. The disclosed process produces an intense singular texture and results in shaft or cylindrical article with a Young's modulus that is at least 40% greater than that of conventional nickel or iron alloys or conventional steels.
Abstract:
A compressor section includes a counter rotating low pressure compressor that includes outer and inner compressor blades interspersed with one another and are configured to rotate in an opposite direction than one another about an axis of rotation. A transmission couples at least one of the outer and inner compressor blades to a shaft. A turbine section includes a counter rotating low pressure turbine having an outer rotor that includes an outer set of turbine blades. An inner rotor has an inner set of turbine blades interspersed with the outer set of turbine blades. The outer rotor is configured to rotate in an opposite direction about the axis of rotation from the inner rotor. A gear system couples at least one of the outer and inner rotors to the shaft.