Abstract:
A polymerization process including: polymerizing at least one olefin to form an olefin based polymer in a gas phase polymerization reactor; and feeding at least one polysulfone additive system to the polymerization reactor, wherein the polysulfone additive system includes a polysulfone copolymer, a polymeric polyamine, and an oil-soluble sulfonic acid.
Abstract:
A method for selecting a semi-conductive coating to be applied to at least a portion of an inner surface of a polyolefin reaction system wherein the coating has certain electrical properties and a fluidized bed reactor vessel wherein at least a portion of a reactor internal surface is coated with a semi-conductive coating is provided.
Abstract:
A continuous gas phase circulating bed reactor, including: a riser for contacting a catalyst and a first gas composition comprising an olefin to form a polyolefin under fast-fluidization regime or a dilute-phase pneumatic conveying regime conditions; a downer for contacting the catalyst and a second gas composition comprising an olefin to form additional polyolefin under fast fluidization regime or a dilute-phase pneumatic conveying regime conditions; and a transport section for conveying at least a portion of the catalyst, polyolefin, and additional polyolefin from the downer to the riser. Also disclosed is a polymerization process using such a circulating bed reactor.
Abstract:
Processes for transitioning among polymerization catalyst systems, preferably catalyst systems that are incompatible with each other. In particular, the processes relate to transitioning from olefin polymerizations utilizing metallocene catalyst systems to olefin polymerizations utilizing traditional Ziegler-Natta catalyst systems.
Abstract:
Catalyst systems and methods for making and using the same are provided. The catalyst systems can include a plurality of silica particles and a metallocene catalyst and an activator supported on the plurality of silica particles. The polymerization catalysts have a particle size distribution in which about 10 % of the particles have a size less than about 17 to about 23 micrometers, about 50 % of the particles have a size less than about 40 to about 45 micrometers, and about 90 % of the particles have a size less than about 72 to about 77 micrometers.
Abstract:
Methods and systems for olefin polymerization are provided. The method for olefin polymerization can include flowing a catalyst through an injection nozzle and into a fluidized bed disposed within a reactor. The method can also include flowing a feed comprising one or more monomers, one or more inert fluids, or a combination thereof through the injection nozzle and into the fluidized bed. The feed can be at a temperature greater than ambient temperature. The method can also include contacting one or more olefins with the catalyst within the fluidized bed at conditions sufficient to produce a polyolefin.
Abstract:
A method for preparing a reactor for performance of a polymerization reaction, the method including providing at least one seed bed into the reactor; wherein the at least one seed bed includes at least one organometallic compound and polymer particles.
Abstract:
Continuity compositions are provided as are methods of their preparation. The compositions comprise at least one metal carboxylate salt which is modified with at least one molten fatty amine. These compositions find advantageous use in olefin polymerization processes.
Abstract:
Methods for producing catalyst systems with increased productivity are disclosed. The methods may comprise providing a catalyst composition comprising a solvent and a single-site catalyst component, heating an inert gas to a temperature in a range of from about 100°C to about 150°C, and spray drying the catalyst composition in the presence of the inert gas to form a spray-dried catalyst system. Additionally, the methods may comprise providing a catalyst composition comprising a solvent, an activator, a filler material, a metallocene catalyst, and a Group 15 -containing catalyst; heating an inert gas to a temperature in a range of from about 100°C to about 150°C; and spray drying the catalyst composition in the presence of the inert gas to form a spray-dried catalyst system.
Abstract:
Disclosed herein are improvements in recycle gas cooler systems in gas-phase polymerization processes that reduce the tendency for cooler fouling, including a recycle gas cooler system comprising a shell-and-tube heat exchanger. One or more of the tubes of the shell-and-tube heat exchanger may have a flared tube inlet at the tube sheet. The shell-and-tube heat exchanger may also be coupled to a straight inlet pipe having a length that is either at least about 5 times the inner diameter of the straight inlet pipe or at least about 15 feet, whichever is greater.