Abstract:
The present invention relates to a process for preparing a solid catalyst component suitable for producing polyethylene and its copolymers, said process comprising the steps of: (a) contacting a dehydrated support having hydroxyl groups with a magnesium compound having the general formula MgR 1 R 2 ; (b) contacting the product obtained in step (a) with modifying compounds (A) and/or (B) and/or (C), wherein: (A) is an 4-amino-pent-3-en-2-one; (B) is a compound having the general formula R 11 f (R 12 O) g SiX h , (C) is a compound having the general formula (R 13 O) 4 M, and (c) contacting the product obtained in step (b) with a titanium halide compound having the general formula TiX 4 , wherein Ti is a titanium atom and X is a halide atom. The invention also relates to a solid catalyst component obtainable by said process. The invention further relates to a process for producing polyethylene and its copolymers in the presence of the solid catalyst component and a co-catalyst.
Abstract translation:本发明涉及制备适用于生产聚乙烯及其共聚物的固体催化剂组分的方法,所述方法包括以下步骤:(a)使具有羟基的脱水载体与镁化合物 具有通式MgR 1 1 R 2 2; (b)使步骤(a)中得到的产物与改性化合物(A)和/或(B)和/或(C)接触,其中:(A)为4-氨基 - 戊-3-烯-2-酮 一; (B)是具有通式R 11 R 12(R 12 O)g SiX
Abstract:
A process for producing an ethylene polymer or copolymer which contains less than 5 ppm titanium and has a bulk density, in granular form, of at least 22.5 lbs/ft3, using a spheroidal Ziegler-Natta type olefin polymerization catalyst having a particle size distribution characterized by a Dm*/Dn of less than 3.0 and comprising a titanium compound, an aluminum compound, and a spheroidal magnesium chloride support.
Abstract:
The invention is directed to a polyethylene composition comprising 20-90 wt% of a LLDPE A and 80-10 wt% of a LLDPE B, wherein i) LLDPE A is obtainable by a process for producing a copolymer of ethylene and another α-olefin in the presence of an Advanced Ziegler-Natta catalyst, ii) LLDPE B is obtainable by a process for producing a copolymer of ethylene and another α-olefin in the presence of a metallocene catalyst.
Abstract:
The present invention provides a process for preparation of a solid titanium catalyst component for use as pro-catalyst for a Ziegler-Natta catalyst system. The solid titanium catalyst component comprises a combination of 15 to 20 wt% of a magnesium moiety, 1.0 to 6.0 wt% of a titanium moiety and 5.0 to 20 wt% of an internal donor, said solid titanium catalyst component has an average particle size in the range of 1 to 100 µm, characterized by a three point particle size distribution of D10 in the range of 1 to 10 µm; D50 in the range of to 25 µm and D90 in the range of 15 to 50 µm. The present invention also provides a 15 Ziegler-Natta catalyst system comprising the solid titanium catalyst component and the method of polymerizing and/or copolymerizing olefins by using the Ziegler-Natta catalyst system.
Abstract:
Non-phthalate compounds having a structure represented by the general formula (I) and a method for using same are provided as electron donors in the Ziegler-Natta type catalyst system for the homopolymerization or copolymerization of alpha olefins. The non-phthalate compounds may be used in the preparation of the solid catalyst component, thus serving as "internal electron donors", or employed during or prior to polymerization as "external electron donors", and therefore they can be used to prepare phthalate-free polyolefins.
Abstract:
Catalyst systems and methods for making and using the same are provided. The catalyst systems can include a plurality of silica particles and a metallocene catalyst and an activator supported on the plurality of silica particles. The polymerization catalysts have a particle size distribution in which about 10 % of the particles have a size less than about 17 to about 23 micrometers, about 50 % of the particles have a size less than about 40 to about 45 micrometers, and about 90 % of the particles have a size less than about 72 to about 77 micrometers.
Abstract:
Supported Ziegler-Natta ethylene polymerisation procatalyst comprising special bi-(oxygen containing ring) compounds as internal donor,as well as a process for preparing the same and use of such a procatalyst for preparing a catalyst system used in the polymerisation of ethylene for producing high molecular weight polyethylenes.
Abstract:
A method for making a solid catalyst component for use in a Ziegler-Natta catalyst includes combining in a hydrocarbon solvent a porous particulate support with a hydrocarbon soluble organomagnesium compound to form a suspension. The organomagnesium compound is halogenated followed by addition of an alcohol and the mixture is then reacted with a titanium compound followed by a reaction with at least one diether compound to form the solid catalyst component. Afterwards the reaction product is extracted with a mixture of a titanium compound and a hydrocarbon solvent. The solid catalyst component recovered is combined with an aluminum cocatalyst to form a Ziegler- Natta catalyst system for the polymerization of olefins. In particular, the catalyst system including a diether internal electron donor may have an activity and hydrogen response suitable for the production of propylene polymers having a molecular weight distribution (PI(GPC)) in the range from about 5.75 to about 9.
Abstract:
Methods of forming a catalyst, catalysts, polymerization processes and polymers formed therefrom are described herein. The method of forming a catalyst generally includes contacting an alkyl magnesium compound with an alcohol to form a magnesium alkoxide compound; contacting the magnesium alkoxide compound with a first titanium alkoxide and a first agent to form a reaction product "A", wherein the titanium alkoxide and the first agent are nonblended individual components prior to contacting the magnesium alkoxide; and sequentially contacting the reaction product "A" with a second agent, followed by a third agent, and subsequently a first reducing agent to form a catalyst component.