Abstract:
A semiconductor structure suitable for micro-transfer printing comprises a semiconductor substrate and a patterned insulation layer disposed on or over the semiconductor substrate. The insulation layer pattern forms one or more etch vias in contact with the semiconductor substrate. In some embodiments, each etch via is exposed. A semiconductor device is disposed on the patterned insulation layer and is surrounded by an isolation material in one or more isolation vias that are adjacent to the etch via. The etch via can be at least partially filled with a semiconductor material that is etchable with a common etchant as the semiconductor substrate. In some embodiments, the etch via is empty and the semiconductor substrate is patterned to forma gap that separates at least a part of the semiconductor device from the semiconductor substrate and forms a tether physically connecting the semiconductor device to an anchor (e.g., a portion of the semiconductor substrate or the patterned insulation layer).
Abstract:
A semiconductor structure suitable for micro-transfer printing comprises a semiconductor substrate and a patterned insulation layer disposed on or over the semiconductor substrate. The insulation layer pattern forms one or more etch vias in contact with the semiconductor substrate. In some embodiments, each etch via is exposed. A semiconductor device is disposed on the patterned insulation layer and is surrounded by an isolation material in one or more isolation vias that are adjacent to the etch via. The etch via can be at least partially filled with a semiconductor material that is etchable with a common etchant as the semiconductor substrate. In some embodiments, the etch via is empty and the semiconductor substrate is patterned to forma gap that separates at least a part of the semiconductor device from the semiconductor substrate and forms a tether physically connecting the semiconductor device to an anchor (e.g., a portion of the semiconductor substrate or the patterned insulation layer).
Abstract:
Es wird ein Verfahren zur Herstellung von Siliziumhalbleiterscheiben und Bauelementen mit Schichtstrukturen von Ill-V-Schichten zur Integration von IIl-V Halbleiterbauelementen beschrieben. Es werden SOI-Silizium-Halbleiterscheiben mit unterschiedlicher Substratorientierung eingesetzt, und die III-V-Halbleiterschichten werden in durch Ätzen erzeugten Gruben (28, 43, 70) innerhalb von bestimmten, elektrisch voneinander isolierten Bereichen (38, 39) der aktiven Halbleiterschicht (24, 42) mittels Abdeckschicht(en) (29) unter Einsatz von MOCVD-Verfahren erzeugt.
Abstract:
A depletion type DMOS transistor comprises a gap in electrode material allowing incorporation of a well dopant species into the underlying semiconductor material. During subsequent dopant diffusion a continuous well region is obtained having an extended lateral extension without having an increased depth. The source dopant species is implanted after masking the gap. Additional channel implantation is performed prior to forming the gate dielectric material.
Abstract:
Es wird ein Verfahren zur Herstellung von Siliziumhalbleiterscheiben mit Schichtstrukturen von III-V-Halbleiterschichten zur Integration von auf III-V-Halbleiterschichten basierenden HEMTs mit Silizium-Bauelementen beschrieben. SOI-Silizium-Halbleiterscheiben werden eingesetzt, auf deren aktiven Halbleiterschicht die III-V-Halbleiterschichten (24) des HEMT-Aufbaus (2) über zwei voneinander isolierte Bereiche (24a, 24b) der aktiven Siliziumschicht reichend platziert werden. Eine entsprechende Schichtanordnung ist ebenfalls offenbart.