摘要:
The subject technology relates to a method including steps for disposing a first electrically conductive material on a substrate to form a first layer of electrodes on the substrate, wherein the first layer includes a source electrode and a drain electrode, and printing a film including carbon nanotubes between the source electrode and the drain electrode, thereby defining at least a first interface between the carbon nanotube film and the source electrode and a second interface between the carbon nanotube film and drain electrode. In certain aspects, the method can further include steps for disposing a second electrically conductive material over the first interface between the carbon nanotube film and the source electrode and the second interface between the carbon nanotube film and the drain electrode. In certain aspects, a transistor device is also provided.
摘要:
The subject technology relates to a method including steps for disposing a first electrically conductive material on a substrate to form a first layer of electrodes on the substrate, wherein the first layer includes a source electrode and a drain electrode, and printing a film including carbon nanotubes between the source electrode and the drain electrode, thereby defining at least a first interface between the carbon nanotube film and the source electrode and a second interface between the carbon nanotube film and drain electrode. In certain aspects, the method can further include steps for disposing a second electrically conductive material over the first interface between the carbon nanotube film and the source electrode and the second interface between the carbon nanotube film and the drain electrode. In certain aspects, a transistor device is also provided.
摘要:
Voltage controlled magnetic tunnel junctions and memory devices are described which provide efficient high speed switching of non-volatile magnetic devices at high cell densities. Implementations are described which provide a wide range of voltage control alternatives with in-plane and perpendicular magnetization, bidirectionally switched magnetization, and control of domain wall dynamics.