Abstract:
A method for identifying an iris image can include obtaining an iris image (24) of an eye, segmenting the iris image, generating, from the segmented iris image, a normalized iris image, and generating, from the normalized iris image, an iris template (28). The method can also include generating a modified iris template by extracting a portion of the iris template, comparing the modified iris template with a plurality of previously stored other modified iris templates and matching the modified iris template with one of the plurality of previously stored other modified iris templates The method can also include generating a modified iris template by extracting a portion of the iris template, comparing the modified iris template with a plurality of previously stored other modified iris templates, and matching the modified ins template with one of the plurality of previously stored other modified iris templates (30).
Abstract:
A method and apparatus for determining camera pose from point correspondences. Specifically, an efficient solution to the classical five-point relative pose problem is presented. The problem is to find the possible solutions for relative camera motion between two calibrated views given five corresponding points. The method consists of computing the coefficients of a tenth degree polynomial and subsequently finding its roots. The method is well suited for numerical implementation that also corresponds to the inherent complexity of the problem. The method is used in a robust hypothesize-and-test framework to estimate structure and motion in real-time.
Abstract:
The present invention provides a method and a system for high performance image signal processing of continuous images in real time. The system comprising a focal plane array for generating continuous source image frames in real time. The focal plane array divided logically into blocks of sub-frames. The system also comprising an analog to digital converter (ADC) layer having an array of ADC elements for converting the source image frames into a digital data. The system further comprising a digital processor layer having an array of processing elements for processing the digital data and an interconnecting layer for connecting each one of the ADC elements and the digital processing elements substantially vertically to the focal plane and substantially parallel to one another. The processing comprising reducing image motion blur, increasing image dynamic range, increasing image depth of field and obtaining features of the images.
Abstract:
Method for tracking an object recorded within a selected frame of a sequence of frames of video data, using a plurality of layers, where at least one object layer of the plurality of layers represents the object includes initializing layer ownership probabilities for pixels of the selected frame using a non-parametric motion model, estimating a set of motion parameters of the plurality of layers for the selected frame using a parametric maximization algorithm and tracking the object. The non-parametric motion model is optical flow and includes warping the mixing probabilities, the appearances of the plurality of layers, and the observed pixel data from the pixels of the preceding frame to the pixels of the selected frame to initialize the layer ownership probabilities for the pixels of the selected frame.
Abstract:
A system and method of compressing a video signal can include the steps of: receiving a video signal, the video signal including frames; analyzing, for each frame, the video signal on a macroblock-by-macroblock level; determining whether to downsample a macroblock residual for each of the macroblocks; selectively downsampling a macroblock residual for some of the macroblocks; and coding the macroblocks. A system and method of decompressing a video signal can include the steps of receiving a compressed video signal, the video signal including frames; analyzing, for each frame, the video signal on a macroblock-by-macroblock level; determining whether to upsample a macroblock residual for each of the macroblocks; selectively upsampling a macroblock residual for some of the macroblocks; and decoding the macroblocks.
Abstract:
A unified approach, a fusion technique, a space-time constraint, a methodology, and system architecture are provided. The unified approach is to fuse the outputs of monocular and stereo video trackers, RFID and localization systems and biometric identification systems. The fusion technique is provided that is based on the transformation of the sensory information from heterogeneous sources into a common coordinate system with rigorous uncertainties analysis to account for various sensor noises and ambiguities. The space-time constraint is used to fuse different sensor using the location and velocity information. Advantages include the ability to continuously track multiple humans with their identities in a large area. The methodology is general so that other sensors can be incorporated into the system. The system architecture is provided for the underlying real-time processing of the sensors.
Abstract:
A method (220) for sensing an electric field includes processing (220) digitized electric field signals, e.g., from an electric field sensing probe (110), (110'). The processing (220) may include performing a Fast Fourier Transform (224) of the digitized electric field signals to provide an indication of the magnitude of the electric field, and may include processing (400) the digitized electric field signals at a rate that is related to the speed at which a movable sensing probe (110), (110') is moving. The method may include performing unweighted and/or weighted averaging (228), (231) in relation to processing electric field data, setting a comparison threshold, providing a human perceivable indication, or a combination of the foregoing.
Abstract:
A method and apparatus for performing collision detection is described. An object is detected within a first operational range of an object tracker. A classification of the object is determined using the object tracker. The object tracker tracks the object. The object is detected within a second operational range of a collision detector. A safety measure is activated based on the classification using the collision detector.
Abstract:
A video processor that uses a low latency pyramid processing technique for fusing images from multiple sensors. The imagery from multiple sensors is enhanced, warped into alignment, and then fused with one another in a manner that provides the fusing to occur within a single frame of video, i.e., sub-frame processing. Such sub-frame processing results in a sub-frame delay between a moment of capturing the images to the display of the fused imagery.
Abstract:
An electronic device having an LV-well element trigger structure that reduces the effective snapback trigger voltage in MOS drivers or ESD protection devices. A reduced triggering voltage facilitates multi-finger turn-on and thus uniform current flow and/or helps to avoid competitive triggering issues.