Abstract:
A process for fabricating size-specific, customized bio-printed musculoskeletal tissue using three dimensional data collected from radiologic imaging is provided. Also, provided is a guide that is created from radiological imaging that demarcates the area of surgical interest. The guide is 3D printed according to guide dimensions collected from radiological imaging, including, but not limited to, CT imaging scans, CT arthrography, ultrasound, MRI, MR arthrography, or any other imaging modality used to image the musculoskeletal system.
Abstract:
The present invention overcomes the problems of conventional mechanical endoprostheses and the drawbacks of current methods of cartilage replacement by making provisions for the production of a complete biological joint replacement. In order to produce a biological joint replacement having hyaline cartilage, which can cope with heavy loads, devices are used for the shaping, the promotion of diffusion and in particular the compression of the joint replacement that is to be produced, i.e. a compression with alternating pressures and eventually a sliding movement of the walker on the surface of the joint replacement. The invention also relates to substances and methods for promoting the formation of hyaline cartilage tissue. The biological joint replacement is currently preferably suited for implantation in the shoulder and the hip, but can also be applied to other joints by using multi-dimensional milling techniques.
Abstract:
Bioreactors are useful for cartilage tissue engineering because traditional batch culture is not optimal for cartilage tissue growth. The present invention attempts to maximize diffusive transport to engineered cartilage constructs by replenishing the culture medium in a continuous flow bioreactor. The medium is supplemented to maintain a pH of 7.0 to 7.6 until the construct reaches a size of at least 1.5 square centimetres. Chondrocytes can be directly cultured from a biopsy without a separate expansion phase. Subject-specific cartilage constructs can be produced from autologous cells. Phenotypically stable, large-sized engineered cartilage constructs that are not hyper-cellularized can be produced. These constructs are desired for articular cartilage repair of damaged joints
Abstract:
A process for culturing chondrocytes to form constructs which contain higher percentages of cells that retain the chondrocytic phenotype are disclosed. The tissue engineered constructs may be formed into neocartilage-containing compositions for a variety of in vitro and in vivo purposes. Methods of treating individuals in need of articular cartilage growth by implanting a new composition are disclosed.
Abstract:
The present invention provides a method for the effective treatment of articulating joint surface cartilage in an animal by the transplantation of an implantable article including chondrocyte cells retained to an absorbable support matrix. The present invention is also directed to an instrument for placing and manipulating the implantable article at the site of implantation, and a retention device for securing the implantable article to the site of implantation. The present invention is also directed to an implantable article for cartilage repair in an animal, the implantable article including chondrocyte cells retained on an absorbable support matrix, and a method of making same. This invention also encompasses, in general, an article comprising an absorbable flexible support matrix for living cells grown and adhered thereto.
Abstract:
Composite devices for tissue engineering are provided having a gradient of one or more of the following: materials, macroarchitecture, microarchitecture, or mechanical properties, which can be used to select or promote attachment of specific cell types on and in the devices prior to and/or after implantation. In various embodiments, the gradient forms a transition zone in the device from a region composed of materials or having properties best suited for one type of tissue to a region composed of materials or having properties suited for a different type of tissue. The devices are made in a continuous process that imparts structural integrity as well as a unique gradient of materials in the architecture. The gradient may relate to the materials, the macroarchitecture, the microarchitecture, the mechanical properties of the device, or several of these together. The devices disclosed herein typically are made using solid free form processes, especially three-dimensional printing process (3DP ). The device can be manufactured in a single continuous process such that the transition from one form of tissue regeneration scaffold and the other form of tissue regeneration scaffold have no "seams" and are not subject to differential swelling along an axis once the device is implanted into physiological fluid.
Abstract:
An improved calcium phosphate delivery vehicle or adjuvant with incorporated adjuvanticity enhancing means and methods of producing same are disclosed. The adjuvant can be fabricated to desired formulations as appropriate and based on the intended purpose. Particle sizes can be adjusted to enhance adjuvant activity. Other supplemental materials may be added as desired and in appropriate proportions to selectively elicit preferred components of the immune system and to enhance the adjuvant's effect on the host response.
Abstract:
An implant (prosthesis) comprises biological material in its surface intended to face the body tissue. The surface is formed of a layer (3) consisting of a mixture of grains (5) of tissue-compatible type and disintegrated tissue-compatible biological material (4). In a method of making the implant, an implant body (2) and amixture of grains (5) of tissue-compatible type and disintegrated tissue-compatible biological material (4) as well as a nutrient solution (6) for the latter are placed in a mould (8). The biological material is allowed to grow in the mould, both out to the boundary wall of the mould cavity and in to the implant body.
Abstract:
A meniscus repair composition for application to a meniscus injury to promote growth of new tissue at the meniscus injury site is provided. The composition comprises: from about 10 to about 50 percent by weight of allograft meniscus particles having an average particle size of from about 10 µm to about 500 µm; and a carrier comprising a solid fibrin web matrix. When introduced to a defect site in a meniscus, the composition is non-adhering to the defect site. A method for repairing a meniscus injury comprises administering a meniscus repair composition to the injury site.