摘要:
A method for delivering drugs into cystic fluid, the method comprising injecting a drug delivery system (DDS) into a cystic fluid space at an injection site, the DDS comprising at least one therapeutic agent encapsulated in biodegradable polymers, applying ultrasonic energy proximal to the injection site, and controlling the at least one of buoyancy, delivery location, mixing, and dispersion of the DDS to a targeted area using the ultrasonic energy.
摘要:
Drug delivery systems and methods are disclosed herein. In some embodiments, a drug delivery system can be configured to deliver a drug to a patient in coordination with a physiological parameter of the patient (e.g., the patient's natural cerebrospinal fluid (CSF) pulsation or the patient's heart or respiration rate). In some embodiments, a drug delivery system can be configured to use a combination of infusion and aspiration to control delivery of a drug to a patient. Catheters, controllers, and other components for use in the above systems are also disclosed, as are various methods of using such systems.
摘要:
Delivery devices, systems, and methods related thereto may be used in humans for spinal delivery of cells, drugs or vectors. Thus, the system enables subpial delivery, which leads to a near complete spinal parenchymal AAV9-mediated gene expression or ASO distribution in both white and grey matter.
摘要:
An intrathecal delivery system for a pharmaceutical includes a reservoir containing a volume of the pharmaceutical agent, and a pump configured to deliver a portion of the pharmaceutical agent contained in the reservoir. A controller is configured to receive biological cycle information pertaining to a biological cycle (e.g., cardiac cycle), and configured, based on the received biological cycle information, to control the pump to deliver the pharmaceutical agent into a patient's intrathecal space as a high-speed bolus at a time corresponding to a time determined based on the biological cycle information. The high-speed bolus may be delivered at a rate of 10-100 µL per second. The timing of such delivery corresponds to a time within the biological cycle when cerebrospinal fluid flow is optimal for intrathecal delivery of the pharmaceutical agent. Conditions for which treatment is enhanced by the intrathecal delivery system include refractory hypertension, spasticity and chronic pain management.
摘要:
A fluid delivery device (30) is provided for delivering fluid to a target site such as an intervertebral disc (182) during discography. The fluid delivery device (30) includes pressure (106) and volume (108) sensors to determine the pressure and the volume of the fluid delivered to the intervertebral disc (182). The fluid delivery device (30) is hand held during use and includes a syringe assembly (42) having a plunger (52) with threads (54) that enables controlled discharge of the fluid from the fluid delivery device (30) by rotating the plunger (52) in a housing (32) of the fluid delivery device (30).
摘要:
Disclosed 'are methods and devices for navigating a subarachnoid space in a vertebrate organism including percutaneously introducing a device into the spinal subarachnoid space at an entry location. Navigation of the spinal subarachnoid space is disclosed for the purpose of reaching a desired location in the subarachnoid space or the intracranial space, including areas in and around the spinal cord and brain. Once a desired location is reached, methods and devices for cooling or heating the desired location to cause physiologic changes are suggested.
摘要:
Disclosed 'are methods and devices for navigating a subarachnoid space in a vertebrate organism including percutaneously introducing a device into the spinal subarachnoid space at an entry location. Navigation of the spinal subarachnoid space is disclosed for the purpose of reaching a desired location in the subarachnoid space or the intracranial space, including areas in and around the spinal cord and brain. Once a desired location is reached, methods and devices for cooling or heating the desired location to cause physiologic changes are suggested.
摘要:
Methods and devices for providing a medical device for use within the subarachnoid space are presented. The medical device may be a guide catheter including anchoring members or other mechanisms for securing a location or a pathway within the subarachnoid space. In some embodiments, the medical device may include multiple articulating elements which may pass through one another, with one or more of the articulating elements including an anchoring member.
摘要:
A balloon (12) for use in compressing cancellous bone and marrow (also known as medullary bone or trabecular bone) against the inner cortex of bones whether the bones are fractured or not. The balloon comprises an inflatable, non-expandable balloon body for insertion into said bone. The body has a shape and size to compress at least a portion of the cancellous bone to form a cavity in the cancellous bone and to restore the original position of the outer cortical bone, if fractured or collapsed. The balloon is prevented from applying excessive pressure to the outer cortical bone. The wall or walls of the balloon are such that proper inflation of the balloon body is achieved to provide for optimum compression of all the bone marrow. The balloon is able to be folded so that it can be inserted quickly into a bone. The balloon can be made to have a suction catheter (16). It can also be coated with therapeutic substances. The main purpose of the balloon is the forming or enlarging of a cavity or passage in a bone, especially in, but not limited to, vertebral bodies. Another important purpose is to deliver therapeutic substances to bone in an improved way.
摘要:
Injectable mediums and methods for preparing and administering an injectable medium comprising therapeutic cells, and optionally one or more therapeutic or diagnostic substance, suitable for injection into an anatomical space of a human or animal subject, comprising hyaluronic acid in concentrations of 0.5 weight percent to 1.0 weight percent having a molecular weight of about ≥700 kDa to about 1,900 kDa and a storage modulus within the range of 5-25 Pa, which injectable mediums and methods prevent cell settling during transportation and storage of such injectable mediums comprising therapeutic cells, and optionally therapeutic or diagnostic substances; promote cell survival; facilitate administration of homogeneous injectable mediums comprising therapeutic cells, in particular NSCs; and enable rapid clearance by the body following injection, so as not to interfere with cellular integration with surrounding tissue.