Abstract:
A process for heat treating biological tissue includes applying a pulsed energy to a first treatment area of a target tissue to create a therapeutic effect to the target tissue without destroying or permanently damaging the target tissue. After a predetermined interval of time, within a single treatment session, the pulsed energy is reapplied to the first treatment area. During the interval of time between pulsed energy applications to the first treatment area, the pulsed energy is applied to a second treatment area of the target tissue that is spaced apart from the first treatment area. The pulsed energy is repeatedly applied to each of the areas to be treated until a predetermined number of applications to each area to be treated has been achieved.
Abstract:
The present invention provides for transesophageal implantation of cardiac electrodes (102) and (104) for pacing and/or defibrillation The electronic module (110) could be implanted in the abdomen or thorax using a transesophageal, transgatric, thoracoscopic or open surgical approach In another aspect, the invention provides for transesophageal delivery of other cardiac therapies including ablation, phototherapy, radiation therapy and implantation or injection of therapeutic substances into the heart The transesophageal approach takes advantage of the proximity between the esophagus and the chambers of the heart, allowing surgical access to the heart with very low morbidity and risk of complications.
Abstract:
The application relates to an ingestible capsule and method for in vivo imaging and/or treatment of one or more diseased areas of interest within the gastrointestinal tract of an animal or human being. The capsule comprises an image sensor; a lens system for focusing images onto the image sensor; at least one light source for illumination of the tissue area of interest, the at least one light source optionally being capable of providing optical therapeutic treatment to the diseased areas; a variable lens system located in front of the at least one light source, wherein the variable lens system comprises beam steering means and focusing means for directing and focusing the light beams from the at least one light source onto the diseased tissue areas,- a control unit in communication with the image sensor, the at least one light source, and variable lens system, a power source for powering the image sensor, the at least one light source and the control unit; and a non-digestible, transparent outer protective shell configured to pass through the gastrointestinal tract, housing within the image sensor, the lens system, the at least one light source, the variable lens system, the control unit and the power source.
Abstract:
Disclosed is a system and method for treatment of cells and, in particular, visual pathway disorders. More particularly, the disclosed invention is directed toward the photomodulation and/or photorejuvenation of retinal epithelial cells, to treat a variety of vision disorders. The process of treating retinal cells to reduce or reverse the effects of visual pathway disorders employs a narrowband source of multichromatic light applied to the retinal cells to deliver a very low energy fluence.
Abstract:
An inflatable device to be used in treatment of stenotic lesions includes external optical fibers with a segment capable of emitting substantially uniform radial energy. The design of the optical fibers ensures a high optical coupling factor and a high efficiency in delivering light-energy to the adjacent tissue volume. A light source is connected to the optical fibers during the inflation of the device. The parameters of the light source: wavelength, waveform and intensity and the design of the optical fibers ensure that the light-tissue interaction depth is within a thin layer of stenotic lesion without inducing irreversible damage to the vessel wall. During the inflation of the device, the external optical fibers pressure the same tissue volume that interacted with the radial emitted light-energy. The confined radial light energy and the mechanical effects induced by the optical fibers create an opto-mechanical effect that facilitates the dilatation of stenotic lesions and reduces the risk of restenosis. The external optical fibers can also facilitate endoluminal drug activation, wherein light activated drugs are used to prevent restenosis or to treat cardiovascular, system, benign and malignant stenosis and other diseases. Various combinations of optical fibers with different capabilities can be used in the same device. The device can be used in treatment of stenosis in the vascular system and in non-vascular systems (such as the urinary or biliary systems). The design of the device ensures that the attachment of the external optical fibers does not obstruct the advancement and maneuvering of the device through tortuous anatomical structures such as stenotic or partially occluded blood vessels.
Abstract:
An inflatable device to be used in treatment of stenotic lesions includes external optical fibers with a segment capable of emitting substantially uniform radial energy. The design of the optical fibers ensures a high optical coupling factor and a high efficiency in delivering light-energy to the adjacent tissue volume. A light source is connected to the optical fibers during the inflation of the device. The parameters of the light source: wavelength, waveform and intensity and the design of the optical fibers ensure that the light-tissue interaction depth is within a thin layer of stenotic lesion without inducing irreversible damage to the vessel wall. During the inflation of the device, the external optical fibers pressure the same tissue volume that interacted with the radial emitted light-energy. The confined radial light energy and the mechanical effects induced by the optical fibers create an opto-mechanical effect that facilitates the dilatation of stenotic lesions and reduces the risk of restenosis. The external optical fibers can also facilitate endoluminal drug activation, wherein light activated drugs are used to prevent restenosis or to treat cardiovascular, system, benign and malignant stenosis and other diseases. Various combinations of optical fibers with different capabilities can be used in the same device. The device can be used in treatment of stenosis in the vascular system and in non-vascular systems (such as the urinary or biliary systems). The design of the device ensures that the attachment of the external optical fibers does not obstruct the advancement and maneuvering of the device through tortuous anatomical structures such as stenotic or partially occluded blood vessels.
Abstract:
An apparatus and method for treating epithelial hyperproliferative diseases by application of an active composition over the diseased irregular tissue which is in the form of a viscous gel to carry the photosensitizer. The gel's viscosity allows it to adhere to the tissue for a sufficient time to transfer the photosensitizer or for a mechanical device such an expanding balloon to press the gel into the tissue. The photosensitizer within the gel is activated by the corresponding wavelenght of radiation. An extended multi-ballon system limits the area of treatment and localizes the spread of the gel. The apparatus, designed to be used with an endoscope, contains a catheter with at least two balloons, one to block drainage of the gel and one to limit the height of the treatment area and to press the gelinto the tissue.
Abstract:
The present invention is drawn to methods and compounds for transcutaneous photodynamic therapy ("PDT") of a target tissue or compositions in a mammalian subject, which includes administering to the subject a therapeutically effective amount of a photosensitizing agent or a photosensitizing agent delivery system or a prodrug, where the photosensitizing agent or photosensitizing agent delivery system or prodrug selectively binds to the target tissue; and irradiating at least a portion of the subject with light at a wavelength absorbed by the photosensitizing agent or if prodrug, by a prodrug product thereof, where the light is provided by a light source, and where the irradiation is at low fluence rate that results in the activation of the photosensitizing agent or prodrug product. These methods of transcutaneous PDT are useful in the treatment of specifically selected target tissues, such as: vascular endothelial tissue; abnormal vascular wall of tumors; tumors of the head and neck; tumors of the gastrointestinal tract; tumors of the liver; tumors of the esophopharyngeal; tumors of the lung; lymphoid tissue; lesions in the vascular system; bone marrow and tissue related to autoimmune disease.
Abstract:
Systems and methods are provided for treating or preventing carbon monoxide poisoning. In particular, systems and methods are provided for a phototherapy treatment or prevention system that delivers light radiation to a patient's body to photodissociate carbon monoxide from hemoglobin.
Abstract:
Systems and methods are provided that allow treatment of cells that are otherwise inaccessible to low level laser therapy. An optically-transmissive device, e.g., a clear piece of silicone, may be placed within a patient's body to optically connect a surface portion, where a laser may be located, to a deeper portion, where a tissue bed to be treated may be located.