Abstract:
Disclosed herein is a gas capture system comprising: a gas inlet arranged to receive a gas flow into the system; a gas outlet arranged to provide a gas flow out of the system; a gas capture region for mass transfer between a gas and a sorbent of the gas; and a sorbent regeneration region for regenerating the sorbent by heating the sorbent so that the sorbent releases a gas; wherein: the gas capture region is arranged to receive sorbent from the sorbent regeneration region; the sorbent regeneration region is arranged to receive sorbent for regeneration from the gas capture region; the sorbent is a solid sorbent of carbon dioxide gas; and the gas capture region comprises: a sorbent inlet arranged to receive an input of sorbent into the gas capture region; a sorbent outlet arranged to provide an output of sorbent from the gas capture region; one or more mass transfer regions arranged between the sorbent inlet and the sorbent outlet such that, in use, the sorbent is retained within the one or more mass transfer regions as the sorbent moves through the mass transfer regions and the mass transfer between the gas and the sorbent occurs in the one or more mass transfer regions; a first gas chamber; and a second gas chamber, that is different from the first gas chamber; wherein the first gas chamber, second gas chamber and one or more mass transfer regions are arranged such that, in use, there is a flow path for gas that comprises gas flowing from the first gas chamber into one of the one or more mass transfer regions, the gas then flowing from said one of the mass transfer regions into the second gas chamber and the gas then flowing from the second gas chamber back into said one of the mass transfer regions.
Abstract:
The invention relates to a method to produce a particulate activated carbon material for capturing CO 2 from air, wherein the particulate activated carbon is impregnated with alkali carbonate salt such as K 2 CO 3 ; and wherein the impregnated particulate activated carbon either has, determined using nitrogen adsorption methods, a pore volume of at least 0.10 cm 3 /g for pore sizes of at least 5nm and a pore volume of at most 0.30 cm 3 /g for pore sizes of less than 2nm or is based on a mixture of different alkali carbonate salts, or has a particular pore surface for pore sizes in the range of 2 nm - 50 nm.
Abstract:
A system for capturing and purifying carbon dioxide obtained from a fermentation vessel as a byproduct of a fermentation process includes a gas purification assembly configured to receive carbon dioxide gas from the fermentation vessel and to output a purified carbon dioxide gas, a compressor configured to compress the purified carbon dioxide gas to a pressure of at least 500 psi, and a condenser including a cooling medium having an average temperature not less than 0 degrees Fahrenheit, the condenser configured to receive the purified carbon dioxide gas from the compressor and to cool the purified carbon dioxide gas such that at least a portion of the purified carbon dioxide gas liquefies.
Abstract:
In a process for the removal of siloxanes from biogas streams, especially a landfill gas stream or a gas stream from anaerobic digesters, the gas stream is first passed through a conventional siloxane removing unit to remove the majority of the siloxanes and subsequently passed over a selected catalyst with polishing effect, thereby removing remaining traces of siloxanes.The catalyst with polishing effect is chosen from i.a. zeolites, porous silica, titania and various metals on alumina or titania.
Abstract:
Processes for reducing the amount of a gaseous iodide-containing impurity present in a recycle gas stream used in the production of ethylene oxide, in particular a vinyl iodide impurity, are provided. Processes for producing ethylene oxide, ethylene carbonate and/or ethylene glycol, and associated reaction systems are similarly provided.
Abstract:
A composition capable of removing chlorides from a gaseous stream and a process of using same. The compositions have sufficient chloride capacity, offer comparable creation of green oil, and have sufficient structural integrity to be utilized as sorbents in a chloride removal process. Generally, the compositions include a first zinc carbonate, a second zinc carbonate different than the first zinc carbonate and an alumina material. The composition has been cured at a temperature between 149 to 399°C. The first zinc carbonate may comprise hydrozincite and the second zinc carbonate may comprise smithsonite.
Abstract:
A smart enclosure protection system for packages containing one or more metals comprises various sensors such as relative humidity, temperature of the metal, temperature within the package, a volatile corrosion inhibitor sensor, as well as a relative humidity sensor. Upon a computer receiving a signal from one or more of the noted sensors that the sensing item is either above or below a predetermined value, it will send a signal to one or more dispensers such as a dehumidifying compound dispenser, a volatile corrosion inhibitor compound dispenser, a soluble corrosion inhibitor compound dispenser, or a chemical fluid absorber or scavenger dispenser to dispense one or more such dispensing compounds that abates or removes an actual or a potential corrosion inhibiting situation.
Abstract:
The present invention relates to a hydrothermally stable form of a porous crystalline material useful in applications where sorbing hydrocarbons is desired. Among such applications is sorption of hydrocarbons from an exhaust stream from an engine in a cold-start condition. A hydrocarbon sorption apparatus including the hydrothermally stable porous crystalline material is provided. In either case, the hydrothermally stable porous crystalline material can contain both 10- and 12- membered ring pore channels, or alternately an 11-membered ring pore channel, as well as have one or more other properties.
Abstract:
Solid sorbents, systems, and methods for pumping, storage, and purification of gases are disclosed. They derive from the dynamics of porous and free convection for specific gas/sorbent combinations and use space filling polyhedral microliths with facial aplanarities to produce sorbent arrays with interpenetrating interstitial manifolds of voids.