Abstract:
An exhaust system for an internal combustion engine, the exhaust system comprising, a lean NO x trap (LNT), a wall flow monolithic substrate having a NO x storage and reduction zone thereon, the wall flow monolithic substrate having a pre-coated porosity of 40% or greater, the NO x storage and reduction zone comprising a platinum group metal loaded on a first support, the first support comprising one or more alkaline earth metal compounds, a mixed magnesium / aluminium oxide, cerium oxide, and at least one base metal oxide selected the group consisting of copper oxide, manganese oxide, iron oxide and zinc oxide.
Abstract:
Support céramique catalytique comprenant un arrangement de cristallites de même taille, même morphologie isodiamétrique et même composition chimique ou sensiblement de même taille, même morphologie isodiamétrique et même composition chimique dans lequel chaque cristallite est en contact ponctuel ou quasiment ponctuel avec des cristallites qui l'entourent.
Abstract:
Improved reaction efficiencies are achieved by the incorporation of enhanced hydrothermally stable catalyst supports in various water-forming hydrogenation reactions or reactions having water-containing feeds. Examples of water-forming hydrogenation reactions that may incorporate the enhanced hydrothermally stable catalyst supports include alcohol synthesis reactions, dehydration reactions, hydrodeoxygenation reactions, methanation reactions, catalytic combustion reaction, hydrocondensation reactions, and sulfur dioxide hydrogenation reactions. Advantages of the methods disclosed herein include an improved resistance of the catalyst support to water poisoning and a consequent lower rate of catalyst attrition and deactivation due to hydrothermal instability. Accordingly, higher efficiencies and yields may be achieved by extension of the enhanced catalyst supports to one or more of the aforementioned reactions.
Abstract:
The present invention provides a catalyst comprising a catalytic metal, preferably cobalt, rhenium or mixtures thereof. The catalytic metal is supported on a support comprising a major amount of titania and a minor amount of cobalt aluminate derived from anatase titania. The support also includes a minor amount of titania derived from a titanium chelate.
Abstract:
A supported catalyst for selective hydrogenation of acetylenes comprising 3-15 wt. % Ni promoted with 0.005 - 0.2 Pd on a support. The catalyst is prepared by depositing nickel promoted with palladium on a support, containing one or more optional elements from copper, silver, Group IA (Li, Na, K, Rb, Cs, Fr) and Group I IA (Be, Mg, Ca, Sr, Ba, Ra) and B(Zn, Cd,) of the periodic table of elements and characterized as: Table (I).
Abstract:
The sulfur oxide removing additive suitable for a FCC unit at low oxygen environment condition is described. The SOx removing additive includes one or more sorbents and one or more oxidation catalysts. The sorbent includes a source of Al and a divalent component. The divalent component is selected from a group consisting of magnesium, calcium, and combinations of two or more. The oxidation catalyst includes a source of cerium. The SOx removing additive is substantially free of vanadium. Also described is a method of removing the sulfur oxide content of a sulfur oxide-containing gas from an FCC unit. The method includes contacting the gas with a SOx removing additive at a low oxygen environment condition.
Abstract:
A process for hydrogenation of carbon oxides comprising contacting a gas mixture containing carbon oxides and of hydrogen with a catalyst comprising bimetallic iron-nickel or iron-cobalt alloys as the active catalytic material supported on a carrier of an oxide. The carrier is preferably formed to have a surface area greater than 20 m 2 /g.
Abstract:
A process for producing esters of fatty acids and glycerin, using heterogeneous catalysts, particularly for producing biodiesel, which comprises the stages of: reaction of vegetable oils or animal fats with an aliphatic monoalcohol, at a temperature ranging from 100 to 250 °C, in the presence of a catalyst which comprises magnesium oxide or mixed oxides of magnesium and aluminum, obtained by calcination of hydrotalcite-like compounds which contain Al and Mg with an atomic ratio of Mg/Al > 1, forming esters of fatty acids and glycerin; separation of the unreacted monoalcohol; and separation of the fatty acid esters and of the glycerin.
Abstract:
A Fischer-Tropsch catalyst containing at least 8 wt % cobalt, assuming full reduction of cobalt, on a porous catalyst carrier having a pore volume of at last 0.2 ml/g characterised by a total content of alkali metal in the catalyst of less than 2000 ppm by weight.
Abstract:
The present invention provides catalysts, reactors, and methods of steam reforming over a catalyst. Surprisingly superior results and properties obtained in methods and catalysts of the present invention are also described. For example, a coated catalyst was demonstrated to be highly stable under steam reforming conditions (high temperature and high pressure of steam). Methods of making steam reforming catalysts are also described.