Abstract:
Un objet de l'invention est un tour (1) destiné à usiner une pièce industrielle (2), la pièce industrielle s'étendant, à partir d'une extrémité tubulaire (3), autour d'un axe central (Z), le tour comportant : un premier moteur (11), apte à entraîner en rotation une platine (19) autour d'un axe de rotation (A); un outil de coupe (23), solidaire de la platine (19); un deuxième moteur (12), apte à translater axialement l'outil de coupe (23) parallèlement à l'axe de rotation (i1); un troisième moteur (13), apte à translater radialement l'outil de coupe (23) perpendiculairement à l'axe de rotation (i1); un élément de maintien (30), apte à fixer le tour à la pièce industrielle, de façon que l'axe de rotation du tour (Δ) soit parallèle à l'axe central (Z); de telle sorte que lorsque le tour est fixé à la pièce, l'outil de coupe est apte à être déplacé contre l'extrémité tubulaire (3), et à être actionné en rotation autour de ladite extrémité, ainsi qu'en translation parallèlement et perpendiculairement à l'axe central (Z), de façon à usiner la pièce industrielle à partir de ladite extrémité.. Le tour est piloté selon une séquence automatique d'étapes, permettant une réalisation automatique de l'usinage de la pièce selon des formes de profil prédéterminées.
Abstract:
The invention relates to a turning insert (1) comprising a top surface (8), an opposite bottom surface (9), side surfaces (13, 13') connecting the top surface (8) and the bottom surface (9), and two opposite nose portions (15, 15'). Each nose portion (15, 15') comprising a convex nose cutting edge (10, 10'), a first cutting edge (11, 11') and a second cutting edge (12, 12'). The convex nose cutting edge (10, 10') connects the first (11, 11') and second (12, 12') cutting edges. A reference plane (RP) is located parallel to and between the top surface (8) and the bottom surface (9). A center axis (Al) extends perpendicular to the reference plane (RP). A bisector (7) extends equidistantly from the first (11) and second (12) cutting edges. In a top view the first (11) and second (12) cutting edges on the same nose portion (15) forms a nose angle (a) of 70-85° relative to each other. Each nose portion (15, 15') comprises a third convex cutting edge (60) adjacent to the first cutting edge (11) and a fourth cutting edge (61) adjacent to the third cutting edge (60). In a top view the fourth cutting edge (61) forms an angle (β) of 0-34° relative to the bisector (7). The distance from the forth cutting edge (61) to the reference plane (RP) is decreasing away from the nose cutting edge (10).
Abstract:
The present invention discloses high frequency vibration assisted turning apparatus and method for Ti alloy work pieces. The invention is also applicable to alloys that are hard to machine in general. It is a novel manufacturing technology, where high frequency vibrations are imposed on the conventional movement of the cutting tool. As an example frequency of 20 kHz and amplitude of 20 μm are provided to the cutting tool in the direction of feed given to tool holder. The method results in reduction of shear friction at the contact between the tool and the work piece, which in turn results in the reduction in shear band formation in this high frequency assisted turned chips. There are benefits which results in terms of improved chip mechanism and tool life. It is observed that the High Frequency Turning produces a better surface finish that the conventional methods.
Abstract:
A method for processing diamond material to change its physical appearance. The diamond is brought into contact with the surface of one or more copper machining part. This assembly is heated in an atmosphere that contains oxygen to thermo-chemically remove carbon from the diamond. The atmosphere contains a reducing agent to control the growth of copper oxide on the machining parts by reducing the copper oxide to copper. Carbon atoms are removed at the interaction region where the surface of the diamond makes contact with the copper on the surfaces of one or more machining part. The rate of carbon removal follows an Arrhenius temperature equation. The diamond and/or the machining parts are moved relative to each other, where each component of the relative speed is less than the material removal rate to thereby remove material thereby shaping the diamond as specified.