Abstract:
Described herein is a fast curing process for producing contact lenses. This fast curing process involves adding a chain-transfer agent, such as, a thiol-containing compound, into a lens-forming composition for making contact lenses. The curing time of such a lens-forming composition can be significantly reduced, compared to a "control composition" that is free of any chain-transfer agent. Also, the elastic modulus of the contact lenses obtained from such a lens-forming composition can be reduced.
Abstract:
The invention is related to a method for producing silicone hydrogel contact lenses with a stable lubricious hydrogel coating thereon. A method of the invention comprises forming a plasma-reactive hydrophilic polymer hybrid base coating having reactive functional groups on a silicone hydrogel contact lens and heating the silicone hydrogel contact lens with the hybrid base coating in an aqueous solution of a water-soluble and thermally crosslinkable hydrophilic polymeric material to form a stable lubricious hydrogel coating thereon.
Abstract:
The invention relates to a lens (1) for vision correction, wherein the lens (1) is configured to be placed directly on the surface of an eye (2) of a person or to be implanted into an eye (2) of a person, and wherein the lens (1) further comprises: a transparent base element (10) having a back side (12) and a front side (11) facing away from the back side (12), a transparent and elastically expandable membrane (20) connected to said base element (10), wherein said membrane (20) comprises a back side (22) that faces said front side (11) of the base element (10), a ring member (30) connected to said back side (22) of the membrane (20) so that the ring member (30) defines a curvature-adjustable area (23) of the membrane (20), and wherein the lens (1) comprises a lens volume (41) adjacent said curvature-adjustable area (23) of the membrane (20), which lens volume (41) is delimited by the ring member (30), and wherein the lens (1) comprises a reservoir volume (42) adjacent a boundary area (24) of said membrane (20), wherein said two volumes (41, 42) are filled with a transparent liquid (50), and wherein said volumes (41, 42) are fluidly connected or fluidly connectable to each other such that, when the reservoir volume (42) is compressed, liquid (50) residing in the reservoir volume (42) is pressed into the lens volume (41) such that the curvature of said curvature-adjustable area (23) of the membrane (22) increases and the focal length of the lens (1) decreases. Further, the invention relates to a method for manufacturing a contact lens according to the invention.
Abstract:
The present disclosure provides a method including forming a polymer layer defining a side of an eye-mountable device. The method may also include providing an adhesive in a ring-shaped pattern on a ring-shaped substrate or on the first polymer layer. The method may also include providing the ring-shaped substrate on the first polymer layer in a predetermined rotational orientation. The method may also include applying a force to one or more of the ring-shaped substrate and the polymer layer to adhere the first polymer layer to the ring- shaped substrate. The method may also include curing the ring-shaped substrate and the first polymer layer.
Abstract:
Described herein is a cost-effective and time-efficient method for making UV-absorbing contact lenses. In contrast to the conventional method for making UV-absorbing contact lenses which involves copolymerizing a lens forming composition including a UV-absorbing vinylic monomer, a method of the invention involves covalent attachment of a UV-absorbing compound having a second reactive functional group to a preformed contact lens having a first reactive functional group therein and/or thereon.
Abstract:
A contact lens providing high visual acuity with the comfort of a soft lens includes a thin layer of hard lens material at the front surface of the contact lens; and a second soft lens material layer at the posterior portion of the lens. The soft lens provides a contact area substantially in contact with the central region of the cornea. The first layer is bonded on top of the second layer directly or through a third elastic material layer. Manufacturing methods overcome problems of swelling of the soft lens component during hydration.
Abstract:
A hydrogel formulation has been developed that can be cast to form a hydrophilic cross-linked network with water content of 30-60% by weight that undergoes a volume expansion less than 5% when equilibrated in water or an aqueous solution of ionic species. This hydrogel formulation was used to cast a soft contact lens incorporating an insert that may be a sealed module filled with a fluid. Diameter of lenses cast without an insert measured within 0.5-5.0%) of the target diameter after hydration. The interface between the hydrogel and the insert in lenses cast with an insert remaining stress free after hydration, when the lens was inspected under a microscope. The formulation comprises and may consist of a mixture of hydrophilic mono-functional monomers, cross-linking agents, a photo-curing catalyst and a diluent.
Abstract:
The invention is related to poly(2-oxazoline-co-ethyleneimine)-epichlorohydrin copolymers and chemically-modified derivatives thereof as well as their uses in formation of non-silicone hydrogel coatings on silicone hydrogel contact lenses.
Abstract:
The invention is related to a method for producing silicone hydrogel contact lenses with having a stable coating thereon. A method of the invention comprises a water-based coating process (step) for forming a relatively-stable base coating of a homo- or copolymer of acrylic acid or C 1 -C 3 alkylacrylic acid onto a silicone hydrogel contact lens made from a lens formulation comprising from about 35 % to about 60 % by weight of N-vinylpyrrolidone.
Abstract:
The present invention provides for an optical assembly using two ultra-thin optical pieces (102, 202) defining the outer bound of the assembly with a liquid core and methods of forming said assembly. In particular, the present in invention discloses the handling and arrangements of said ultra-thin optical pieces to prevent deformation and loss of optical quality of said ultra-thin optical pieces. The ultra-thin optical pieces can be from 25-200 microns and their structural integrity can be preserved through uninterrupted support by substates (101, 201) throughout the encapsulation of one or more fluids, e.g., a saline solution (301) and an oil solution (305), which can be used to form a liquid meniscus lens. In some embodiments, interlocking features (115) included in the ultra-thin optical parts can be included in order to help create the seal and/or provide structural support to the liquid lens assembly. In another embodiment, the supporting pieces to the ultra-thin optical components have an interlocking or centering mechanism, to aid in the assembly and sealing of said optical assembly.